
The CDO CMOR operator

Produce CMIP-compliant climate model output
September 2018

CDO 1.9.6 with CMOR 3.4.0

Fabian Wachsmann, Stephanie Legutke, Joerg Wegner, Martin
Schupfner

Deutsches Klimarechenzentrum (DKRZ)

Contents

1. Introduction 3

2. Installation 4
2.1. DKRZ system . 4
2.2. Local installation . 4

2.2.1. Using Conda . 4
2.2.2. Using build script . 4

3. Usage 5
3.1. Syntax . 5

3.1.1. Examples . 5
3.2. MIP-table . 6
3.3. Why no name specification for the output file? . 6

4. Configuration 8
4.1. Info table . 10

4.1.1. Examples . 10
4.1.2. Global attributes . 10

4.2. Variable mapping . 12
4.2.1. Using the command line . 14
4.2.2. Using a mapping table file . 14
4.2.3. Examples . 16

4.3. Coordinates . 17
4.3.1. Grid info file . 17
4.3.2. Time axis . 18
4.3.3. Scalar axes . 19
4.3.4. Labeled axes . 20
4.3.5. Vertical parametric axes . 21

4.4. Output control . 21
4.4.1. Append mode . 21
4.4.2. Examples . 22

4.5. Internal procedures . 23
4.5.1. Time coordinate . 23
4.5.2. Spatial boundaries . 23

A. Table of all keywords except global attributes 24

B. Tables of global attributes 26
B.1. Keywords to simplify global attribute configuration . 26
B.2. Unrestricted global attributes . 26
B.3. Attributes recognized or required by the CMIP5 standard 26
B.4. Attributes recognized or required by the CORDEX standard 27
B.5. Attributes recognized or required by the CMIP6 standard 28

C. Script to install cdo with CMOR support on a unix system 30

2

1. Introduction

The Climate Data Operators (CDO) software is a collection of operators for standard processing of climate
and forecast model data. Here, only the single operator cdo cmor is documented. This is necessary
because, in contrast to other operators, it includes many configuration options to rearrange model output
and to add metadata. It features an interface to the Climate Model Output Rewriter library CMOR
developed at PCMDI. This library comprises a set of functions which can be used to produce files that
fulfill the requirements of model intercomparison projects (MIPs). The output resulting from CMOR is
”self-describing” and facilitates analysis of results across models.

cdo cmor provides an easy interface to CMOR in order to simplify its usage. It comprises all CMOR func-
tions and therefore supports all requested climate data structures including rotated grids, hybrid vertical
or character axes. However, the operator itself does not represent a tool for arithmetics or diagnostics. For
this purpose, the reader is recommended to use other operators which can be connected with cdo cmor
in an operator chain to reduce I/O traffic.

In contrast to other CMOR applications developed for one specific project or one specific model, the
operator is applicable for output of many climate models including all submodel realms like atmosphere,
ocean or sea-ice and for many projects. In fact, necessary configurations for such an unrestricted application
needs to be delivered by the user however the required user input can be reduced to a minimum. This
is enabled by exploiting the information which is available in the input file and which is retrieved from
the climate data interface CDI. This interface provides a fast and file format independent access to the
input files. The long term goal is to enable the conversion of output of all earth system models (ESM)
participating in CMIP.

Different versions of the CMOR library have been published over the years. A stable operator was developed
at the DKRZ and Max-Planck-Institute for Meteorology based on CMOR version 2 which is appropriate to
build CMIP5 (phase 5 of the Coupled Model Intercomparison Project) compliant NetCDF model output.
The operator was validated with the CMIP5 database generated at the DKRZ.

As a next step, the operator has been prepared to include CMOR version 3 as well so that CMIP6 compliant
data can be produced. However, since changes of both, the CMIP6 data standard and request, as well as
of CMOR version 3 can not be excluded, the operator may require updates in order to remain compatible
with the most recent versions.

The operator will be further enhanced at the DKRZ. Next updates will also focus on the long term goal
of facilitating the preparation of project compliant output for future CMIP phases and other projects.

This manual is based on a CDO installation with CMOR version 2. In the following, red boxes highlight
aspects where cdo cmor differs when applied with recent CMOR 3 versions. The examples given in
’example’ sections can be tried with files provided at the HPC of DKRZ, mistral, in /work/bm0021/cdo_

incl_cmor. Copy the ’example’ directory to a local directory. The operations have to be executed in the
latter folder in order to use a default info table ’.cdocmorinfo’ (see 4.1.2).

This manual explains how to create a file which complies to a project data standard, the standard itself is
not explained. It is assumed that the user is familiar with the corresponding data standard including the
meaning and the vocabulary of the metadata and data requirements. The CMIP6 Participation Guidance
for Modelers includes all necessary documents about the CMIP6 data standard.

3

https://pcmdi.github.io/cmor-site/
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
/work/bm0021/cdo_incl_cmor
/work/bm0021/cdo_incl_cmor
https://pcmdi.llnl.gov/CMIP6/Guide/modelers.html
https://pcmdi.llnl.gov/CMIP6/Guide/modelers.html

2. Installation

The installation of CDO with CMOR is complex because a number of packages used by both, CDO and
CMOR, need to be combined. It is highly recommended to use the operator on the DKRZ system (mistral)
if possible where additional user support can be given.

2.1. DKRZ system

On the login node of mistral, a CDO version 1.7.2 is loaded per default. All CDO versions from version
1.9.4. on are installed with CMOR 3.3 on mistral. A corresponding CDO version can be loaded by typing
for example:

module unload cdo

module load cdo/1.9.4-gcc64

The most recent tag of CDO including cdo cmor operator is linked on mistral in /work/bm0021/cdo_

incl_cmor/cdo_recent_cmor2 for CDOs installed with CMOR2 and /work/bm0021/cdo_incl_cmor/cdo_

recent_cmor3 for CDOs installed with CMOR3. In /work/bm0021/cdo_incl_cmor, a script for the in-
stallation in a user-defined directory is given.

2.2. Local installation

2.2.1. Using Conda

The most recent CDO version can be easily installed with the most recent CMOR version by using Conda:

#update conda

conda update conda

#name the environment for cdo with cmor

cdoenv=cdocmor

#install develop-cdo which contains CMOR "conda-forge/label/dev::cdo"

#use conda-forge channel with "-c conda-forge"

#set $cdoenv as environment with --name

conda create --name ${cdoenv} conda-forge/label/dev::cdo -c conda-forge

#then activate it

source activate ${cdoenv}

2.2.2. Using build script

For this purpose it is recommended to use CDO versions greater equal 1.9.4. Tagged versions of the source
code are provided at https://svn.dkrz.de/mad/Model/cmor-support/branches/cdo_incl_cmor and
can be downloaded after a registration on request. Recent tags starting from 06.14.17 support installation
with either CMOR version 2.92 or versions greater equal 3.2.3 so that, selectively, CMIP5 and CMIP6
compliant data can be produced. An example script supporting the installation of the downloaded code
on a linux computer is given in Appendix C. It requires downloads of other packages. Note that this
installation results in full CDO support for GRIB and NETCDF file formats.

4

/work/bm0021/cdo_incl_cmor/cdo_recent_cmor2
/work/bm0021/cdo_incl_cmor/cdo_recent_cmor2
/work/bm0021/cdo_incl_cmor/cdo_recent_cmor3
/work/bm0021/cdo_incl_cmor/cdo_recent_cmor3
/work/bm0021/cdo_incl_cmor
https://svn.dkrz.de/mad/Model/cmor-support/branches/cdo_incl_cmor

3. Usage

This chapter introduces the operator syntax (section 3.1) and describes parameters and arguments as well
as their format. A special argument of the operator and the fact that no outfile name specification is
allowed are illuminated in section 3.2 and 3.3 respectively.

3.1. Syntax

The cdo cmor operator requires at least one parameter and one argument (note that, for most use cases,
this is not sufficient). The parameter is a MIP-table which contains the requested variables and the
argument is the input file infile. Both files can be specified with a relative or absolute path. In contrast to
many other CDO operators, the outfile name can not be specified because it is part of the project standard
and accordingly generated by CMOR. The syntax of the operator is:

cdo cmor,MIP-table[,keyvaluelist] infile

The MIP-table always has to be the first parameter of cdo cmor. A second parameter can be specified
in format of a comma separated keyvaluelist. This list consists of keyword=values pairs where the values
can be specified as a comma separated list (CSL):

key=value[,value,...][,key=value[,value,...]]

The position of keywords in the list does not matter. All available keywords are given in Appendix A. For
some keywords only one value is allowed. Every keyword has a long and a short name version. The short
version is composed of the first character of each partial string of the keyword separated by underscores
(’ ’). For example, the corresponding shortname for keyword cmor name is cn.

3.1.1. Examples

Note that each MIP-table and infile for all examples are provided at the DKRZ system mistral in /work/

bm0021/cdo_incl_cmor/examples. With the following command, all variables in example interface.nc will
be converted.

cdo cmor,cmip5_mip_tables/CMIP5_Amon example_interface.nc #example 1

A subset of variables from the input file can be selected for processing by using keyword cmor name. The
values must be names of CMOR variables which appear in the MIP-table provided as argument 1. If no
cmor name is specified, infile variable names are interpreted as cmor names. If a specified cmor name does
not appear in the MIP-table passed as argument 1, the operator aborts.

cdo cmor,cmip5_mip_tables/CMIP5_Amon,cmor_name=tas,uas example_interface.nc #example 2

cdo cmor,cmip5_mip_tables/CMIP5_Amon,cn=tas,uas example_interface.nc #example 3

#example 3 shows a command variant using the short name version cn for cmor name.

The above calls of the operator can only be successful if the input file is a NetCDF file and contains all
information necessary for the conversion to a compliant format as global and variable attributes. This
minimum information consists of:

5

/work/bm0021/cdo_incl_cmor/examples
/work/bm0021/cdo_incl_cmor/examples

MIP-table Usage

� Spatial information i.e. ’longitude’ and ’latitude’ coordinates of the data grid.

� Temporal information:

– Time stamps for each time step (relative or absolute)

– calendar

– required time units

� All global attributes:

– project id, experiment id, source, institution, ...

� Attributes of the variables listed in cmor name:

– units

3.2. MIP-table

The data request of CMIP-like projects is translated into MIP-tables which are readable for CMOR.
One MIP-table usually contains the format of variables including variable names (cmor names), variable
attributes and required dimensions requested with one specific time cell method, frequency or shape and
for one specific realm. The tables are named and distinguished with the help of these parameters. E.g., the
monthly requested variable tas (Near-surface Air Temperature) is defined in a MIP-table named ’Amon’
where ’A’ stands for Atmosphere and ’mon’ for monthly. However, the nomenclature of MIP-tables is not
based on a strict rule.

The same cmor name can occur in more than one MIP-table, e.g. if a variable is not only requested for
monthly frequency but also for daily. This subdivision is of importance since a variable can have different
requirements for different frequencies. A CMOR variable is the unique combination of a MIP-table and
a cmor name. The operator must be able to identify the requested CMOR variable which is why the
MIP-table needs to be given in any call of the operator.

3.3. Why no name specification for the output file?

The output file as well as its name and its path are well-defined and created by CMOR. Name and path
are constructed using a subset of meta data. This subset is called Data Reference Syntax (DRS).

For both, name and path, DRS components are arranged according to a template defined by each project.
The two control keyword, drs and drs root are available to control whether and where this output path
is created (see section 4.4). Note that the build-rules of the CMIP6 standard for constructing outfile name
and path differ slightly from those of CMIP5. The templates are given below.

CMOR version dependent

CMOR2 sets the file names and paths according to the CMIP5 build-rules. These build-rules can not be
modified by the user and, therefore, if CMOR2 is used to rewrite data according to a standard different
from that of CMIP5, a renaming of the output paths and files is necessary. One exception is the project
CORDEX for which the output file directory structure is also created by the operator compliantly to the
project build-rule.

The CMIP5 output file template:
”<variable id> <table id> <model id> <experiment id> <member> period ”
and the output path template:
”<activity id>/<product>/<institude id>/<model id>/
<experiment id>/<frequency>/<realm>/<variable id>/<member>/ ”.

6

Usage Why no name specification for the output file?

CMOR3 allows the user to specify the build rules for output file names. The defaults are those of CMIP6:

The CMIP6 output file template:
” <variable id> <table id> <source id> <experiment id> <member id> <grid label> period”
The output path template:” <mip era>/<activity id>/<institution id>/<source id>/
<experiment id>/<member id>/<table id>/<variable id>/<grid label>/<version>/”.

7

4. Configuration

In order to highlight the function of cdo cmor, it is reasonable to distinguish between the data stream
and the meta data stream from the input file into cdo cmor and, subsequently, the output file. The
operator serves the purpose to rewrite the input data and not to manipulate it. By rewriting, the data is
restructured: Dimensions may be reordered, netCDF is used as output file format, each output file includes
only one variable and the output file will be compressed per default.

Besides two minor data changing processes, the values of the variables will not be modified. These processes
are: Units conversion if the input variable units deviate from the project standard units as well as sign
conversion if the positive axis of the input variable is directed oppositely to the designated direction of
positive values (see also section 4.2).

The meta data and its configuration can be classified into three fields: global attributes, variable attributes,
and coordinates and its attributes (approximately temporal and spatial description). cdo cmor offers dif-
ferent methods to set the meta data configuration. One valid meta data configuration method is introduced
in the example of section 3.1.1: The input file is a netCDF file and includes all meta data required by the
project for the target variable.

Figure 4.1.: Metadata workflow: Predefinitions and user setting options in cdo cmor

An order of precedence exist for the meta data configuration: Information given in infile may be overwritten
by the corresponding information in the info table, mapping table or grid info file so that wrong infile

8

Configuration

information can be corrected. On top of that, cdo cmor features a command line ’mapping’ (see section
4.2) enhancing the ’quick’ and interactive application of the operator so that variable attributes and their
coordinate information can be specified in the command line as well. Command line settings have the
highest priority and overwrite all prior settings. The meta data and data stream is illustrated in figure 4.2.

However, usually infile does not contain the complete set of requested meta data. In this case, configuration
files each linked to one of the three introduced meta data fields can be used to provide or correct the missing
meta data: Info tables for global attributes (section 4.1), a mapping table for variables and their attributes
(section 4.2.2) and a grid info file for coordinates and their attributes (section 4.3) (visualized in figure 4.1
by blue rectangles and the gear-wheel for the command line). These interfaces enable a comprehensive,
reusable and easy adaptable configuration simplifying the use of the operator.

Figure 4.2.: Metadata and datas tream in cdo cmor. Wrong or missing information can be overwritten
by meta data configuration files and command line parameters. All meta data information is
collected, passed to CMOR and checked by CMOR with the help of the MIP-table.

The user can organize the meta data stream and specify meta data files via the command line. For each
meta data table file, a keyword exists which can be given a value via the command line in the keyvalue
list. In the following sections, the usage of the meta data files is explained. An info table (section 4.1)
can also include control keywords next to global attributes (section 4.1.2). The mapping table enables
linking model variables to CMOR variables reducing preprocessing efforts. Coordinate information can be
provided via a grid info file (see section 4.3).

cdo cmor allows appending of output to an existing file. How to control this append mode is described
in section 4.4. Methods of automatic background calculations in internal procedures of cdo cmor are
introduced in section 4.5. That section is not essential for the correct usage of cdo cmor and may be
skipped.

9

Info table Configuration

4.1. Info table

Info tables can be specified in a CSL with keyword info. If info is not used, a default file is searched
by the operator in the current working directory (CWD). It is hidden and named ’.cdocmorinfo’. An Info
table contains a keyvaluelist with one keyword=value pair per line. All global attributes required by the
project standard have to be given in Info tables. All specifications from files of that CSL are gathered to
be one configuration for a single cdo cmor call.

In addition to global attributes, three groups of additional control keywords can be included: Filename key-
words (mip table, mip table dir, mapping table, mapping table dir, grid info and grid info dir),
output control (drs and drs root, see section 3.3), global attribute control and coordinate keywords. The
operator can build complete file paths with the directory keywords. With the help of project id, the
operator can also build the full MIP-table name so that it can be sufficient to call ’cdo cmor,Amon,...’.

4.1.1. Examples

The default info file ’.cdocmorinfo’ will be parsed.

The following calls are equivalent:

cdo cmor,cmip5_mip_tables/CMIP5_Amon,cn=tas example_interface.nc

cdo cmor,cmip5_mip_tables/CMIP5_Amon,info=’.cdocmorinfo’,cn=tas example_interface.nc

Since ’project_id’ and ’mip_table_dir’ are defined in ’.cdocmorinfo’, we can write

cdo cmor,Amon,cn=tas example_interface.nc

4.1.2. Global attributes

CMOR version dependent

CMOR 3 (creates CMIP6 data standard)

As part of the CMIP standard, a set of global attributes is requested to be specified depending on the
project. If project id is not specified in an info table, the operator is able to detect the project id by
analyzing the MIP-table passed as argument 1 and continues to test for further global attributes depending
on the project. It uses the first substring of the MIP-table file name separated by an underscore.

In CMIP6, this project id is also used as mip era and the other way around. All further required
attributes depending on the project standard can be taken from the project’s Control Vocabulary (CV).
CMOR3 requires that this CV is expressed as a MIP-table named ”<project id> CV.json” in the MIP-
table directory. It contains the definitions of required and recognized attributes. Additionally, it includes
allowed values and restrictions to the values of these attributes. Further information can be found in
sections 4.1.2.1 and 4.1.2.2.

cdo cmor provides three keywords which simplify the specifications of a number of global attributes (
their formats are given in the appendix B.1):

� keep all attributes: If its value is ’y’, global attributes given in infile and in addition to the
required global attributes will be kept and, if not overwritten by an info table specification, passed
to CMOR. If its value is ’n’, all global attributes given in infile will be discarded allthough they may
be required by the standard.

� member combines the indices associated with realization, initialization, physics and forcing which
describe the ensemble member.

� parent dates contains information to create parent time units, branch time in parent, branch time in child

which will be required if an experiment is branched from a parent experiment. The branch times are
relative time values from a reference time defined by each experiment. It is assumed that the parent
time units begin with ”days since”.

10

Configuration Info table

Attributes beginning with parent or branch are required if the current experiment is branched from
another, called parent experiment. Consider that recognized attributes can also have CV restrictions.
Those who are unrestricted can be specified to supply the user with additional helpful information (e.g.
comment, history, references, variant info, summarized in appendix B.2). Unrestricted attributes will
be transferred to the output without further checking if ’y’ is specified for keyword keep all attributes.

We recommend distributing global attributes to different Info tables categorized by topics Model, Experi-
ment and User (see Appendix) to keep a clear and reusable configuration structure. A single file including
a whole set of attributes can be very long which complicates the regain or adaption of attributes. Fur-
thermore, when converting output from the same model but for another experiment, only those attributes
given in the Experiment table needs to be adapted.

CMOR 2 (creates CMIP5 and CORDEX data standard)

CMOR2 indirectly prescribes a subset of global attributes which are always recognized independent of the
project’s data standard (because these attributes correspond to arguments of the cmor dataset function).
They can be subdivided in global attributes which are always required (Table 4.1) and optional global
attributes (Table 4.2).

Table 4.1.: Global attributes required by cdo cmor independently of the project if CDOs are installed
with CMOR2

Keyword Example Explanation

project id CMIP5 Value must be the project which is
found in the MIP-table passed as argu-
ment 1.

experiment id amip

model id MPI-ESM-LR

source ”MPI-ESM-LR 2011; URL: ht.... ” References for the model.

instituie id MPI-M

institution ”Max Planck Institute for Meteorol-
ogy”

contact cmip5-mpi-esm@dkrz.de Contact for questions about the data.

Table 4.2.: Global attributes recognized by cdo cmor when CDOs are installed with CMOR2.
Keyword Example (default format

is string, otherwise men-
tioned)

Explanation

realization 1 (Integer) Part of the ensemble member label.

initialization methods 1 (Integer) Part of the ensemble member label.

physics version 1 (Integer) Part of the ensemble member label.

forcing oz Description of forcing.

leap year 2000 (Integer) Can be specified if a specific year is
skipped independent of the calendar

leap month 11 (Integer) Can be specified if a specific month is
skipped independent of the calendar

parent experiment id piControl Similar to experiment id but for par-
ent

parent experiment rip r1i1p1 Parent experiment ensemble member
label.

branch time 50 (Double) Branch time in parent.

cdo cmor provides three keywords which simplify the specifications of a number of global attributes (
their formats are given in the appendix B.1):

� keep all attributes: If its value is ’y’, global attributes given in infile and in addition to the
required global attributes will be kept and, if not overwritten by an info table specification, passed

11

Variable mapping Configuration

to CMOR. If its value is ’n’, all global attributes given in infile will be discarded allthough they may
be required by the standard.

� member combines the indices associated with realization, initialization and physics which describe the
ensemble member.

� parent dates contains information to create parent time units and branch time which will be
required if an experiment is branched from a parent experiment. The branch time is a relative time
value from a reference time defined by the parent experiment. It is assumed that the parent time
units begin with ”days since”.

.

As for CMOR3, we recommend to distribute global attributes to different Info tables categorized by topics
Model, Experiment and User (see Appendix) to keep a clear and reusable structure.

4.1.2.1. CMIP5 and CORDEX compliant meta data standard

Attributes given in tables 4.1 and 4.2 are part of the project’s meta data standard. Additional to these
attributes, some more have to be passed to the operator in order to achieve CORDEX compliant format.
Since the regional models used in CORDEX are driven by global ESM models, a domain and a driving
model have to be specified within CORDEX meta data standard.

For both projects, an overview about all required global attributes is provided in appendix B.3 and B.4.
Recent CORDEX projects (e.g. CORDEX-CORE) require that the tracking id usually built by CMOR is
constructed with a prefix in order to be compliant to the format of a PID. Therefore, the user can specify
’y’ for the keyword tracking prefix in order to use the project’s prefix when building the tracking id.

4.1.2.2. CMIP6 compliant meta data standard

All CMIP6 required attributes are shown in Table B.5. To simplify the correct configuration, the DKRZ
provides a script at c6dreq.dkrz.de/cdocmorinfo/index.html which uses the CV file of CMIP6 to guar-
antee a CMIP6 compliant configuration set of global attributes. Background information to CMIP6 global
attributes can be found in Taylor et al. (2019, https://goo.gl/v1drZl).

The DRS of CMIP6 provides a subdirectory <version>(see section 3.3). This is created by CMOR using
the date the user calls the program. If the postprocessing takes longer than a day, a single variable may
be saved in different version directories. This is a problem since a complete time series of a single variable
of a single realization should be saved in one version directory. Therefore, cdo cmor offers the user to set
a free string for this directory via keyword version date.

4.2. Variable mapping

infiles may be available in a raw format containing variables without attributes, e.g. in GRIB-format where
the variables are identified by codes. In this case, it is required to change each variable name to the correct
cmor name and provide requested attributes. The method to link infile variables to their corresponding
CMOR variables is called ”mapping”. In CMIP like projects, values for attributes cmor name, units,
cell methods and postive are required. Note that the user’s specifications of these attributes should
describe the variable in infile. Additionally, it can be necessary to specify coordinate names. An overview
of all valid mapping keywords is given in table 4.3.

cdo cmor provides two ways to map the infile variable: Via command line (section 4.2.1) and by using
a mapping table (section 4.2.2). The command line method allows mapping of only one variable in each
operator call. Note that the order of precedence (command line specifications overwrite table specifications
which in turn overwrite infile specifications) enables the correction of prior settings.

For renaming an infile variable as its corresponding cmor name, cdo cmor provides two additional infile
variable selectors: name (which should be used if infile is formatted as netCDF) and code (which should be

12

c6dreq.dkrz.de/cdocmorinfo/index.html
https://goo.gl/v1drZl

Configuration Variable mapping

used if infile is formatted as GRIB). Only one value is allowed for both keywords. If one of these keywords
is specified, a corresponding cmor name must be specified as well.

The infile variable units can be provided as value of keyword units. units must be CMOR readable
(UDUNITS conform) because CMOR will change it if the requested units are different. A positive

attribute may be required if the variable repesents a vertical flux.

cell methods denotes the aggregation method which was used to create the infile variable. A conversion
of the variable is only possible if its cell methods correspond to the value requested by the MIP-table.
’Mean’ is used for temporal averages, ’point’ for instantaneous, ’climate’ for climatological mean of higher
frequency data (e.g. the 30 year mean of monthly means), ’diurnal’ for long-term means of one hour means
covering a whole day and ’none’ for static fields. Note that ’diurnal’ is only valid in CMIP6.

Coordinates are also defined in the project standard and specific coordinate values, e.g. levels for vertical
axes may be requested. Therefore, allowed coordinates are formulated as CMOR variables: For CMIP6,
they are defined in the MIP-table ’CMIP6 coordinates.json’ whereas for CMIP5, coordinates that are
allowed for a specific variable have to be defined in the same MIP-table like the variable itself. The operator
can distinguish axis types from infile (e.g. by interpreting the standard name attribute of coordinate
variables) and is therefore usually able to pass correct coordinate names to CMOR automatically.

One exception is the name of vertical pressure axes. The cmor name of the axis describing CMOR
variable needs to be provided as the value for keyword z axis. Example: CMOR variable ’ta’ in MIP-
table ”CMIP6 Amon.json” is requested on the vertical axis ’plev19’. In that case, z axis=plev19 must
be passed to the operator when producing ’ta’ with ”CMIP6 Amon.json”. For scalar axes, the keyword
z axis needs to be specified as well if its value deviates from the requested one (see section 4.3.3). For
configuring character coordinates with keyword character axis please see section 4.3.4.

Table 4.3.: Target CMOR variable selection keyword (first line), infile variable selection keywords (second
and third lines), variable attributes (following lines) and variable coordinates (last two lines)
which can be specified. Note that only one infile variable selection keyword can be used,
otherwise the operator gives an error.

Name Short
name

Format and description Default

cmor name cn The value must be in the MIP-table specified
as argument 1. It is used to identify the target
CMOR variable. If a mapping table is spec-
ified, it is also used to identify the appropriate
table line (see 4.2.2).

Variable name in infile is
interpreted as cmor name.

name n Variable name in infile of the variable re-
quested via cmor name.

If neither ’name’ nor
’code’ is specified, no
variable renaming is done.

code c Integer (Limit: Three digits). Value is the
variable code in infile of the variable requested
via cmor name.

If neither ’name’ nor
’code’ is specified, no
variable renaming is done.

units u String. Value must be readable by library
’udunits’, e.g.: ’W m-2’. CMOR uses this li-
brary to convert infile data values if this is not
the requested units.

If no value is registered,
units are taken from in-
file. If no units informa-
tion is available, the oper-
ator gives an error.

positive p Value is ’u’ or ’d’. This attribute enables
CMOR to switch the sign of a directed vari-
able, e.g. radiation flux. ’u’ stands for ’up-
ward’, ’d’ for ’downward’.

No default.

13

https://www.unidata.ucar.edu/software/udunits/

Variable mapping Configuration

cell methods cm Value is one of ’m’, ’p’, ’c’, ’d’ and ’n’ which
stands for ’mean’, ’point’, ’climate’, ’diurnal’
and ’none’ (see note in this section for more
details). This is the aggregation method used
for the chosen variable in infile. Its value is
necessary to register the correct time axis.

The default is mean i.e.
’m’.

variable comment vc String. Value gives additional information
about the variable.

No default

z axis za cmor name of the coordinate. Optionally, val-
ues for the coordinate can be specified in a
grid info file.

For a scalar z-axis: As in
the MIP-table.

character axis ca cmor name name of the coordinate. Values for
the coordinate need to be specified in a grid
info file.

No default

4.2.1. Using the command line

The user can set all attributes displayed in Table 4.3 through the keyvalue list in the command line. These
specifications overwrite all prior settings. A subset of variables can still be processed in one operator call,
however, it can be problematic since the specified variable attributes are assigned to all infile variables.
Therefore, it is recommended to specify a cmor name when variable attributes are specified. If renaming
is used as well, only one variable can be processed in each operator call. These cases are illustrated in the
following examples.

Subset of variables are processed (Innames = Infile variable names):

cdo cmor,MIP-table infile

#CMOR names are innames*

cdo cmor,MIP-table,cmor_name=cnames infile #select by cnames

#CMOR names are cnames*

units ’K’ is assigned to all CMOR variables listed in cnames:

cdo cmor,MIP-table,cmor_name=cnames,units=K infile #select by cnames

#CMOR names are cnames*

Active renaming; only one variable can be processed:

cdo cmor,MIP-table,name=inname,cmor_name=cname infile #select by inname

#CMOR name is cname*

cdo cmor,MIP-table,code=incode,cmor_name=cname infile #select by incode

#CMOR name is cname*

*In few cases, the cmor name is not equal to the name of the variable in outfile, e.g. for cn=co2clim where
the variable name is co2 in the outfile.

4.2.2. Using a mapping table file

cdo cmor offers a way to rename a subset of variables and provide them with individual attributes in the
same operator call which is beneficial e.g. in the operational application. This is realized by a mapping
table file which can be registered via keyword mapping table and which is formatted like a fortran namelist.
Each line of this file is related to one CMOR variable and contains the variable’s attributes. An example
of three lines of a mapping table is given in the following.

¶meter project_mip_table=Amon cn=tas n=temp2 c=167 p=" " u="K" cm="m" /

¶meter project_mip_table=Amon cn=sos n=sss c=016 u="psu" cm=m /

¶meter project_mip_table=Amon cn=msftbarot n=psitro c=027 u="kg s-1" cm=m /

14

Configuration Variable mapping

Consider format constraints when preparing a mapping table:

1. Each line must begin with the entry keyword ’¶meter’ and must end with ’/’.

2. If a value contains blanks, it must be put in quotation marks.

3. In contrast to the interactive mapping, one can also denote both, name and code in the table.

4. Both, the order of further keywords in each line and additional blanks between value and next keyword
do not matter.

In order to link each mapping table line to one specific CMOR variable, the keyword project mip table

exists which is the substring of the MIP-table name after ’<project id> ’, for example: ’Amon’. Both
keywords cmor name and project mip table should be specified in each mapping table line for a clear
identification of the matching CMOR variable.

The mapping procedure can be subdivided into the mapping table line (MTL) selection and infile variable
(IV) selection. The MTL selection depends on whether cmor name is specified in the command line or not.
Subsequently, the IV is selected with the help of a keyword from the selected MTL. Both procedures are
explained by the implemented chronological processing sequence in the following.

MTL selection if cmor name is specified in the command line (recommended approach)

In this case, the target CMOR variable is determined in the operator call with the help of cmor name

and the MIP-table (argument 1). The mapping table line which contains the cmor name that matches the
one specified in the command line is identified. If no line with a corresponding cmor name is found, the
mapping table is not processed for the cmor name specified in the command line. Otherwise, the identified
line is tested for keyword project mip table:

� In case the identified line contains a project mip table keyvalue:

It is tested whether it matches the MIP-table passed as argument 1. There can be multiple lines
in the mapping table with the same cmor name because, for different project mip tables, the
requested variable and also the corresponding provided infile variable can be different. If the
project mip table keyvalue disagrees with the MIP-table, this line is rejected and the next lines
are tested similar to the procedure introduced before. If the project mip table value matches the
MIP-table passed as argument 1, this line is taken for mapping.

� In case the identified line does not contain a project mip table keyvalue:

The identified line is saved but next lines are also tested. The last line of matching cmor names is
taken for mapping.

Selection of the infile variable:

As next step, the corresponding infile variable needs to be detected. Therefore, variable selectors name

and code are identified from that line and compared with infile variables. Keyword name is applied in case
the infile has NetCDF format and code in case the infile has GRIB format. If a variable in infile has the
corresponding name, all further attributes of this line are assigned to this variable. In case name and code

are missing, cmor name is also used as infile variable selector. If no selector attribute corresponds to an
infile variable, the line in the mapping table will be ignored and next lines are tested.

MTL and infile variable selection if cmor name is not specified in the command line:

As usual, all variables in infile will be processed. However, the infile variable names are not considered as
cmor names but are used as MTL selection keyword (infile variable code for GRIB infiles). That is, if a
mapping table line contains a variable selector keyword which matches an infile variable, this line is used
for mapping. Again, the mapping table line should contain a project mip table keyword which is checked
against the MIP-table given as argument 1 in the way described before.

Overwriting mapping table configurations with command line mapping:

If, in addition to a mapping table, a variable selection key (name or code) and cmor name are specified in
the command line, the IV selection changes: The value of keyword name found in the mapping table line

15

Variable mapping Configuration

is ignored and the variable from infile is chosen by the name specified in the command line. Furthermore,
attributes configured in the command line overwrites attributes configured via mapping table. Therefore,
the combination of both mapping methods can be reasonable e.g. if the origin model variable changed
after the mapping table was constructed.

4.2.3. Examples

1. Simple example of preparation and application of a mapping table:

Szenario: Your model produces output in GRIB-format where variables are identified via code. You are
interested in the MIP-compliant conversion of near-surface temperature tas (code 167).

For creating a one-line mapping table ”mapping table.txt”, execute:

echo ’¶meter cn=tas c=167 u=K cm=m /’ >>mapping_table.txt

With this line, the following two cdo cmor calls are equivalent:

cdo cmor,Amon,cn=tas,c=167,u=K,cm=m example_mapping.grb

cdo cmor,Amon,mt=mapping_table.txt example_mapping.grb

2. Use the same mapping table line but applied on an infile variable with another name:

Szenario: Due to model development, model variables are identified with names now but you do not want
to adapt the mapping table.

cdo cmor,Amon,cn=tas,n=T_2M,mt=mapping_table.txt example_T_2M.nc

3. Use the same mapping table line but overwrite values:

Szenario: You would like to use the mapping table from someone but you want also change an attribute.

cdo cmor,Amon,cn=tas,n=T_2M,mt=mapping_table.txt,u=degC example_T_2M_celsius.nc

4. Use project mip table:

Szenario: If a variable, e.g. with cmor name tas, comes from the atmosphere model for table Amon, but
from the ocean model for table day.

we have to remove the old mapping table

since we now add project_mip_table:

rm mapping_table.txt

echo ’¶meter cn=tas n=atmosTas u=K cm=m project_mip_table=Amon/’ >>mapping_table.txt

echo ’¶meter cn=tas n=oceanTas u=K cm=m project_mip_table=day/’ >>mapping_table.txt

cdo cmor,Amon,cn=tas,mt=mapping_table.txt example_temp_mon.nc # Uses atmosTas

cdo cmor,day,cn=tas,mt=mapping_table.txt example_temp_day.nc # Uses oceanTas

Note that you have to specify a cmor name because otherwise, cdo cmor processes all infile variables and
maps via name.

5. Use mapping table for a subset of variables.

Szenario: Assume, you finally have the ”perfect” mapping table ”mtPERFECT.txt” where all model
output variables are assigned to the corresponding cmor name.

cdo cmor,Amon,mt=mtPERFECT.txt example_collect.grb

The last operation produces several files, where name is used as entry keyword for the mapping table.

16

Configuration Coordinates

4.3. Coordinates

Coordinates are also provided as CMOR variables in the CMIP standard (for CMIP6 in ”CMIP6 coordinates.json”,
for CMIP5 in each MIP table). Target variables can be requested on a specific coordinate variable (e.g. tas
on height2m). This is not always the case: There are variables requested on dimension ”alev” which means
atmospheric model level - here various coordinates are valid. Therefore, CMOR requires the cmor name of
the axis a variable is submitted on as input.

The interface of the CDOs can retrieve much temporal and spatial information from infile. Attributes
’standard name’ and ’units’ of coordinate variables are read and used to define axis types according to the
CF-conventions, or, in case of an infile in GRIB format, accoding to GRIB tables. The output of cdo
sinfo, cdo griddes, cdo zaxisdes and cdo showtimestamp show how CDO handles coordinates of
infile. The information is used to pass the correct axis names to CMOR.

However, sometimes this retrieved information can be insufficient for the conversion to CMIP standard. In
the following, it is discussed how to pass additional coordinates information to the operator. One option is
to provide a grid info file (section 4.3.1). The time axis (section 4.3.2) and scalar and character axes (section
4.3.3 and 4.3.4) have specific requirements and the operator therefore offers additional configuration options
discussed in the corresponding sections. All required grid information for all target variables needs to be
available during one operator call.

4.3.1. Grid info file

A grid info file specified via grid info may be either in a table format equivalent to the Info table or in
netCDF format. The table format grid info file is intended for (re-)defining coordinates which are assigned
in the mapping to particular axes of target variables. The processing of a grid info file in table format
is equal to an Info table file however keywords can only be either coordinate names or time keywords -
corresponding use cases are given in sections 4.3.2, 4.3.3 and 4.3.4. Not all axis definitions included in a
grid Info table file are completely applied but only those which are pointed at by mapping keywords.

A more powerful grid info file is of netCDF format. This type has the purpose to completely substitute
the infile grid and can also be used to (re-)define coordinates. Thus, it contains all required coordinate
variables and their attributes as well as their bounds. Note that the z-axis will be switched too unless the
user specifies the keyword switch z. In contrast to a grid info file in table format, all information in a
netCDF grid info file is used whenever it is specified and the operator aborts, if the substituted grid does
not fit to the infile variable. Such a grid info netCDF file can be for example a compliant output file from
an earlier conversion.

The operator can only retrieve a grid from a netCDF grid info file if a variable exist in that file which
points to the the correct coordinate descriptions. Only one grid can be passed to the operator and it will
be the grid information of the first variable the operator finds in the netCDF grid info file. The operator
checks whether the dimension size of the axis in infile which is to be substituted fits to the total numbers
of values specified for an axis provided in a grid info file and stops if not.

4.3.1.1. Examples

Grid info table

In the operator call:

cdo cmor,Amon,za=height2m,cn=tas,gi=gitable.txt example_interface.nc

a keyvalue ”z axis=height2m” is specified. Now, it is searched for information about the height2m axis in
the grid info file ”gitable.txt” (For more information about height2m see section 4.3.3). If no reference for
height2m is given during mapping, information about height2m in the grid info file is ignored.

Grid info netCDF file

17

Coordinates Configuration

Models participating in project CORDEX usually use grids with grid mapping parameter describing the
relation between the used coordinates and the true latitude and longitude coordintaes. However, model
output raw data does not contain required grid information like grid cell boundaries or mapping attributes.
If project compliant grid data is available, you can substitute the incomplete grid information of the raw
data:

cdo cmor,mon,i=cdocmorinfoCORDEX,gi=example_gridinfo_CCLM4-8-17.nc,cn=tas example_CCLM.nc

4.3.2. Time axis

CMOR distinguishes five time axes : time, time1, time2, time3 and none for fixed fields. The user can
detect a CMOR variable’s time axis by looking at its dimension names. Each of these time axes correspond
to a specific average method or time cell method which describes how a CMOR variable is aggregated. The
user needs to provide the cell methods attribute for each variable so that the operator can check whether
this method is compliant to the requested time axis.

Technically, each time axis has different requirements on the time axis and time bounds. If the requested
time cell methods (section 4.2) for a target variable is neither ’none’ nor ’point’, the standardized output
includes time values and time bounds. In case the cell methods is ’point’, the exact time values for when
the data is valid are required. ’none’ means that the target variable has no time axis and its values are
fixed.

The input requested by CMOR for time axes time, time2 and time3 are the time bounds whereas for time1
it is the time values. If the infile includes time bounds, they are passed to CMOR. Otherwise, the operator
can calculate time bounds on the basis of time values (section 4.5) and with the help of keywords. In case
the time axis is time1 the provided time values must be exact. The infile time bounds can be discarded
by specifying ’y’ for keyword time bounds which causes the operator to ignore infile time bounds and to
use the calculation method based on time values. An overview of the different time axes are given in Table
4.4.

Table 4.4.: Link of time axis with requested cell methods, format of time values and time bounds as well
as required user input.

Time
axis

cell methods time values time bounds required user input

none none

time mean At the midpoint
of average inter-
vall given by time
bounds. CMOR
determines it auto-
matically.

The interval must
cover the timestep
in the frequency
the variable is
requested for.

Either the correct time bounds.
Or time values: time bounds are
created with the frequency the
variable is requested on.

time1 point When variable is
written.

The exact time values.

time2 climate Climatology time
bounds will cover a
month and years

Either climatology time bounds.
Or time values with the
exact month the variable
is valid for and attribute
climatology interval (see
text).

time3 diurnal Time bounds cover
an hour and a
month

Either time bounds. Or time val-
ues indicating the exact month
and hour the values are valid for.

The standardized file includes a relative time axis where values are the temporal distance to a reference
time (usually in days). The format of time values and time bounds in infile however can be either relative

18

Configuration Coordinates

or absolute which includes complete date and time information for every record. In case the input variable
uses an absolute axis, the operator is able to transforms it to a relative time axis with the keyword
required time units. Five different recommendations how to set this time units can be taken from
Taylor et al. 2019, https://goo.gl/neswPr. Note that time related keywords discussed in this section
can be either specified in Info tables or in a grid Info table file.

Furthermore, the calendar is mandatory (normally given in infile) and can be specified via keyword
calendar. Its default value is ’standard’.

If a climatological time axis is requested, the first year and last year of the averaging interval must be
provided via keyword climatology interval. This is necessary because the averaging period can not be
deduced from the infile information. All keywords referring to temporal information are listed in Table
4.5.

Table 4.5.: Time related keywords.

Name Short
name

Format and description Default

required time

units (also set-
table in command line
and infile)

rtu ’<Frequency>since <Year>-
<Month>- <Day><Hours>:
<Minutes>: <Seconds>’, for
example: ’days since 1979-1-1
00:00:00’.

No default

calendar Value is one of ’standard’ (’gre-
gorian’), ’proleptic gregorian’,
’360 day’, ’noleap’ and ’all leap’.
The calendar depends on the
model configuration.

’standard’

climatology interval Two comma separated years as
integers. E.g.: 2001,2010

No default

time bounds ’c’ for calculating time bounds
from infile time values and over-
writing infile time bounds.

If available, using provided
time bounds from infile. Other-
wise: ’c’.

4.3.3. Scalar axes

If a dimension has size one, the corresponding axis is referred to as ”scalar” and has a specific requested
format. E.g., if a variable is requested for only one specific level, the project standard provides that this
level is not a dimension but a coordinate variable.

Although a specific coordinate value of a scalar axis is requested by the project standard, the value may
deviate if a valid range is defined. E.g., for the scalar axis ’height2m’, values between 1.0 and 10.0 are also
allowed. The operator uses the default value for the scalar axis which can be determined from the its name
(e.g. 2m for height2m) without further specifications. If however the level used in infile (i.e. the model) is
different from the requested one, the user has two options: Either to provide a grid info netCDF file with
a standard compliant scalar axis variable containing the deviating value or to use an info table where

� the <z axis name>(cmor name of the corresponding scalar axis CMOR variable) needs to be pro-
vided during mapping as value of keyword z axis (see section 4.2), e.g.: z axis=basin.

� the level used in infile needs to be specified in the grid info file for a keyword named like the z axis
in the format: <z axis name>=<level value>, e.g.: height2m=1.5

4.3.3.1. Examples

The CMOR variable with cmor name ’tas’ in MIP-table ’Amon’ (Near-surface Air Temperature) is re-
quested with scalar coordinate ’height2m’ with ’2m’ as default value. If the model outputs the correspond-
ing tas at 1.5m, the default of 2m can be overwritten by:

19

https://goo.gl/neswPr

Coordinates Configuration

in the mapping, e.g. command line mapping:

cdo cmor,Amon,cn=tas,z_axis=height2m example_interface.nc

in grid Info table file:

height2m=1.5

4.3.4. Labeled axes

”When data is representative of geographic regions or area types which can be identified by names but
which have complex boundaries that cannot practically be specified using longitude and latitude boundary
coordinates, a labeled axis should be used to identify the regions. Character strings labelling the elements
of an axis are regarded as string-valued auxiliary coordinate variables” (CF 6.1 and 6.1.1). Accordingly,
two standard names are available for those coordinate variables (referred to as character axis): ’region’
and ’area type’.

Such a character coordinate variable is usually not provided in infile - often only dimension indices are
given in infile. For that case, the operator offers a configuration similar to the scalar axis configuration:
The name of this axis as well as its coordinate names can be registered in an Info table. The order of
character axis values must correspond to the dimension indices sequence.

� The <character axis name>(cmor name of the corresponding character axis CMOR variable) can
be configured with the keyword: character axis (see section 4.2), e.g.: ca=basin.

� A connected second keyword in the grid info table then defines the values of the axis: <charac-
ter axis name>=<coordinate names>, e.g.: basin=global ocean,atlantic arctic ocean,indian pacific ocean

Each elements for a labeled axis can be provided as individual variables. To cause the operator to merge
these elements together into one variable, they have to be specified as values for name respective code in the
mapping table line of the corresponding cmor name. The operator checks if the field sizes of all individual
labeled elements agree and converts the dimension which contains only one value into a character axis.

4.3.4.1. Examples

(no files yet in the example directory)

Variable msftyz in CMIP6 Omon.json is requested with coordinates latitude, rho, basin and time. ”basin”
is requested with elements ”atlantic arctic ocean”, ”indian pacific ocean” and ”global ocean”.

Szenario: A basin describing string-valued coordinate variable is not given in infile.

Provide the string-valued coordinate variable name during mapping,

e.g. command line mapping:

cdo cmor,Omon,cn=msftyz,character_axis=basin infile

Specify the coordinate variable name and its values

in grid info table file

in the order they are provided in the basin dimension:

basin=global_ocean,atlantic_arctic_ocean,indian_pacific_ocean

Szenario: Additionally to the first scenario, instead of msftyz(lat,rho,basin,time) the basin coordinates are
given as variables atlantic var(lat,rho,1,time), indian var(lat,rho,1, time) and global var(lat,rho,1,time).

Cause the operator to merge variables to one variable

¶meter cn=msftyz n=atlantic_arctic_var,indian_var,global_var

20

Configuration Output control

4.3.5. Vertical parametric axes

The CMIP standard allows for vertical parametric axes if a variable is requested on ’alev’s (atmospheric
model levels). These axes are built on the basis of a formula which contains parameters. E.g., the hybrid
sigma pressure coordinate named ’alternate hybrid sigma’ is built by the formula:

p(n, lev, j, i) = ap(lev) + b(lev) ∗ ps(n, j, i)

where p(n, lev, j, i) is the pressure at gridpoint (n, lev, j, i), ap(lev) and b(lev) are components of the hybrid
coordinate at level lev and ps(n, j, i) is the surface pressure at horizontal gridpoint (j, i) and time (n). 1 In
standard output, variables ap(lev), b(lev), ps(n,j,i), ap bnds(lev,bnds) and b bnds(lev,bnds) are available
in addition to the variable lev(lev) and lev bnds(lev, bnds). These parameters have to be passed to the
operator.

� If infile is a netCDF file:

The recommended procedure is to provide the coordinate variables according to the CMIP standard
and CF-conventions: The vertical coordinate variable (e.g. named lev but of hybrid sigma pressure
type) is associated with its definition by the value (”atmosphere hybrid sigma pressure coordinate”)
of the standard name attribute (Usually, the definition formula is also provided in a formula at-
tribute). The terms in the definition formula (ap, b ∗ ps) are associated with the file variables (ap, b,
ps) by the formula terms attribute. As an alternative, variables named ’hyai’ and b ’hybi’ will be
automatically associated with ap and b (The processing with output of atmospheric model echam).

The formula terms attribute takes a string value of the form ” term: variable” i.e. ”ap: ap b: b ps:
ps”. The order of elements does not matter. (See CF-conventions Appendix D).

� In a grib formatted infile:

The operator identifies a hybrid alternate axis if the key ’indicatorOfTypeOfLevel’ (octet 10) has
either the value 109 or 110. The corresponding parameter ap and b then should be saved for gribapi
key ”pv”.

For variables with this axis type, the surface pressure is often saved separately, however, for the operator
a surface pressure variable has to be available in infile or in a substitution grid info netCDF file. The
operator identifies the surface pressure via variable name ’ps’. If a mapping table is specified, the name

which corresponds to cmor name=ps is used to find the correct infile variable. If ps is not found but
’alternate hybrid sigma’ is requested, the operator gives an error.

4.4. Output control

The operator offers two keywords to modify the path construction to the outfile: drs and drs root. The
value of drs determines whether a directory structure with DRS components according to the project’s
build-rule is built (see section 3.3) and the value of drs root defines where this structure is rooted.

Standardized data is compressed per default with deflate level 1 and shuffle. The user can set attribte
deflate level to -1 in order to create uncompressed data. If deflate level is set to 0, the output will
be compressed with shuffle only.

cdo cmor allows the user to append data to a ’chunk’ file which is an incomplete CMOR output file which
contains only data for a temporal part of a period. How to control this append mode is discussed in the
following.

4.4.1. Append mode

The operator replaces files if the output mode is set to ’r’ (REPLACE) or append data to a chunk if the
output mode is set to ’a (APPEND). The default output mode of cdo cmor is ’APPEND’. cdo cmor

1Right now, only this ’alternate hybrid sigma’ axis is enabled and test data for other axes built by a formula is required to
guarantee a correct processing in CDOs.

21

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.pdf

Output control Configuration

tries to open a chunk which can either be specified via last chunk or read from a chunk description file.
On success, data will be appended.

The chunk description file is created every time cdo cmor is applied in append mode. This is be-
cause, if the append mode is consecutively used several times, e.g. in operational usage, the file name
continuously changes which makes the user specification of last chunk difficult. Therefore, the name
of the successfully created outfile is written into a file of the form: ’.CHUNK FILE <cmor name>
<miptab freq> <model id> <experiment id> <member>.txt’ and saves it in the working directory.
E.g.: ’CHUNK FILE tas mon MPI-ESM Amon r1i1p1.txt’. When cdo cmor is started in append
mode and with enabled path creation drs=y again, the file name saved in ’CHUNK FILE tas mon MPI-
ESM Amon r1i1p1.txt’ is searched. If no valid chunk is found, the output mode switches to REPLACE.

In the process of appending, it is checked that the temporal interval between the previous chunk and the
new data leaves no gap. The maximal file size including chunk size and new data size can be specified
for keyword max size. It has the default value 2Gb. If the size is exceeded, the operator switches to
REPLACE mode. Table 4.6 gives an overview about all output control keywords.

Table 4.6.: Keywords to control the output of cdo cmor
Name Short

name
Format and description Default

output mode om Character. Value is either ’r’ for CMOR
replace mode or ’a’ for CMOR append
mode. In replace mode, CMOR pro-
duces a new file.

’r’ for replace

last chunk lc CSL. Values are chunk file names corre-
sponding to the order of requested vari-
ables via ’cmor name’.

For CMIP5 and ’drs’=y, file names
are built with attributes in the form:
’CHUNK FILE <cmor name>
<miptab freq> <model id>
<experiment id> <member>.txt’
from where the operator reads each
chunk file name.

max size ms Integer. Value is the upper limit for the
size of an output file in gigabyte and
only used in append mode.

2

drs d Character. Value is either ’y’ or ’n’. ’y’:
Directory structure according to a tem-
plate (see section 3.3) is built. ’n’: No
directory structure is built and the file
is saved in the directory specified via
drs root.

y. Note that, for ESGF publication,
the data have to be submitted with
the DRS structure.

drs root dr String. Value is the path where the di-
rectory structure (DRS) is rooted.

Current working directory

deflate level dl Integer. Value is level on which the vari-
ble is compressed.

1

4.4.2. Examples

Szenario: Your postprocessing is executed whenever one model simulation year output has been written.
However, the final file should contain more than one year. The file you produced earlier when doing the
example in section 3.1.1 is your chunk and data for year 2002 should be appended.

DRSpath=CMIP5/output/MPI-M/MPI-ESM-LR/amip/mon/atmos/tas/r1i1p1/

cdo cmor,Amon,om=a,mt=mapping_table.txt,

lc=${DRSpath}tas_Amon_MPI-ESM-LR_amip_r1i1p1_200101-200112.nc example_temp2002.nc

During the processing the operator creates the file ’CHUNK FILE tas Amon MPI-ESM amip r1i1p1.txt’
where the name of the last chunk is saved. If you want to add new data to the chunk, you do not have to
specify the last chunk by yourself.

22

Configuration Internal procedures

cdo cmor,Amon,om=a,mt=mapping_table.txt example_temp2003.nc

4.5. Internal procedures

This chapter illuminates background operator functions that automatically help during the conversion
process.

4.5.1. Time coordinate

If cell methods is not ’none’, what is actually passed to CMOR are time bounds instead of time values.
The operator, however, can calculate these bounds based on provided time values and a frequency which is
usually deduced from the MIP-table name. Since CMOR expects boundaries to leave no gap, the processed
time bounds always cover the whole unit of the frequency: If the frequency is yearly, a time value is valid
for the whole year. E.g., if a time value is 01-23-1954 00:00:00 and frequency is yearly, the lower bound
is 01-01-1954 00:00:00 and the upper bound is 01-01-1955 00:00:00. The original time value is moved to
the mid point of this range by CMOR, which would be 07-01-1954 12:00:00 in the example if a ’standard’
calendar is used. For requests with subdaily frequencies, this method is deviated: The upper bound t+
and lower bound t− are calculated by t± = t ± 1/2 ∗ f where t is the time value and f is the frequency.
Here it is even more important that the provided time value is definitely correct.

If no frequency can be deduced from the MIP-table name, cdo cmor tries to derive it from infile by
counting time steps and determine the covered temporal range by these. However, if the operator is part
of a CDO chain this derivation is not possible because infile must be opened a second time. This is due
to the fact that CDO intends to read one record of all variables per timestep which cannot be part of the
’get frequency’ function.

The frequency derivation from infile relies on two steps: First, Nt

∆yr is calculated where Nt is the number of
time steps in infile and ∆yr the covered temporal range in years. If this term is 1, frequency is annual, if
it is 12, frequency is monthly, and so on. If no clear frequency assignment is possible, as a next step Nt1

∆mon
is calculated which is the number of time steps in the first year Nt1 divided by the covered months in the
first year. If Nt1

∆mon > 31 ∗ 8, cdo cmor gives an error because a sub-3hourly frequency is not yet enabled.

If Nt1

∆mon > 31 ∗ 4, frequency is 3hourly, if Nt1

∆mon > 31 , frequency is 6hourly and so on up to monthly.

4.5.2. Spatial boundaries

CMOR requires spatial boundaries for axes which define the valid area respective covered height of a grid
cell. If boundaries for a spatial axis are not implemented in infile, cdo cmor will interpolate the given grid
point coordinates to the mid point between adjacent grid points, respectively, in order to build boundaries.

In case of a regular grid, the northern and southern boundaries latitudes are constant along the northern
and southern boundaries, repsectively, as well as the western and eastern boundary longitudes are constant
along the western and eastern boundaries, respectively. Four values are required by CMOR for each cardinal
direction at each grid point. If needed, cdo cmor calculates them by averaging the longitutes as well as
latitudes of two adjacent grid points, respectively. The upper and lower boundaries for z-axis levels are
also calculated by averaging two adjacent level values, respectively.

In case of a curvilinear grid, CMOR requires grid cell corners and for all four grid cell corners, both,
longitues and latitudes must be specified. If needed, cdo cmor calculates them with a piecewise bilinear
interpolation: Half-longitudes (-latitudes) are calculated by averaging adjacent longitudes (latitudes). The
grid cell corner longitudes (latidues) can be derived by averaging adjacent half-longitudes (-latitudes). I.e.,
the grid cell corner longitudes (latitudes) are the half-longitudes-on-half-latidues (half-latitudes-on-half-
longitudes). If the absolute difference between two adjacent longitude values is bigger than 180 degrees,
180 degrees are added (substracted) to the average of these values if it is lower (higher) than 180 degrees.
This procedure is observed to produce plausible bounds at the transmission from 360 to 0 degrees on the
grid and prohibits values lower 0 or higher 360 degrees. Since this is an expensive and possibly imprecise
approach it is highly recommended to deliver the bounds.

23

A. Table of all keywords except global attributes

Abbrev. in tables: Column Necessary Information: Y = yes: from key, from Infile or from default; (Y)
= yes if request demands it; N = No). Column Associated with topic: E: Experiment, M: Model, U:
User, G: Grid.

Function Key name
Italic: Also
specifiable in
info files.

Key
short
name

Neces-
sary
infor-
ma-
tion

Format Default if
not available
from key or
infile

Variable Selector cmor name cn Y Must be in MIP-table -

Variable Selector name n N - -

Variable Selector code c N Three digits integer.
Equivalent to GRIB-code

-

Metadata File info i Y CSL of Filenames ’.cdomorinfo’
in the cur-
rent working
directory

Metadata File grid info gi Y Filename. Grid dimen-
sions must fit to infile vari-
able dimensions.

-

Metadata File grid info dir - N Filepath -

Metadata File mapping table mt N Filename -

Metadata File mapping table
dir

- N Filepath -

Metadata File mip table dir - N Filepath -

Coordinate Info required
time units

rtu Y String: ’<Frequency>
since
<Year>- <Month>-
<Day><Hours>: <Min-
utes>: <Seconds>’

-

Coordinate Info calendar - Y 5 options -

Coordinate Info climatology
interval

- (Y) Two comma separated
years (integer).

-

Coordinate Info tbnds ign - Y Character. y for ignoring
infile time bounds vari-
able, n for not.

n

CMOR variable se-
lector in mapping
table

project mip table pmt N Substring of MIP-table
filename after ’ ’. Only
assignable in a mapping
table.

-

Variable Mapping units u Y String. Must be readable
from UD units library

-

Variable Mapping cell methods cm Y 5 options mean

Variable Mapping positive p (Y) Character. d for down-
ward, u for upward

-

Variable Mapping variable comment vc N String -

Variable Mapping character axis ca N Cmor axis label -

24

Table of all keywords except global attributes

Variable Mapping z axis za N Cmor axis label -

Output Control output mode om Y Character. r for replace or
a for append

r

Output Control max size ms Y Integer. Unit: Gb 2

Output Control last chunk lc N CSL of Filenames -

Output Control drs d Y Character. ’y’ for building
path and ’n’ for not

’y’

Output Control drs root dr Y Path where DRS path is
created

current
working
directory

25

B. Tables of global attributes

B.1. Keywords to simplify global attribute configuration

Keyword Associated global at-
tributes in CMIP6

Associated
global attributes
in CMIP5

Format

keep all

attributes

all all ’y’ (default) or ’n’

parent dates parent time units,
branch time in parent,
branch time in child

branch time Two comma separated inte-
gers: <parentReferenceDate>,
<parentBranchDate>. where
each Date has the format:
<year><month ><day>. E.g.:
18500101,18500201.

member realization index,
initialization index,
physics index,
forcing index

realization,
initialization

method,
physics version

r%di%dp%d (CMIP5) or
r%di%dp%df%d (CMIP6) where
%d is each index in integer
format.

B.2. Unrestricted global attributes

Keyword Value example Explanation

comment any Additional information.

history any Additional information.

references ECHAM6: Stevens, ... Citations.

variant info ”GHG, Oz, ...” Characteristics of ensemble
member.

B.3. Attributes recognized or required by the CMIP5 standard

Global attribute. Asso-
ciated
with
topic

Example De-
fault type is
String, other-
wise mentioned.

Neces-
sary
infor-
ma-
tion

Explanation

project id E CMIP5 Y Value must be equivalent to the project
which can be found in the MIP-table
passed as argument 1.

experiment id E amip Y

realization E 1 (Integer) Y Part of the ensemble member label.

initialization method E 1 (Integer) Y Part of the ensemble member label.

physics version E 1 (Integer) Y Part of the ensemble member label.

forcing E oz N Description of forcing.

26

Tables of global attributes Attributes recognized or required by the CORDEX standard

comment E N

parent experiment id E piControl (Y) Similar to experiment id but for par-
ent

parent experiment rip E r1i1p1 (Y) Parent experiment ensemble member
label.

branch time E 50 (Double) (Y) Branch time in parent.

model id M MPI-ESM Y

source M ”MPI-ESM-LR
2011; URL:
ht.... ”

Y A reference of the model.

product M output Y

references M ECHAM6:
Stevens, ...

N Citations

leap year M 2000 (Integer) N Can be specified if a specific year is
skipped independent of the calendar

leap month M 11 (Integer) N Can be specified if a specific month is
skipped independent of the calendar

institude id U MPI-M Y

institution U ”Max Planck In-
stitute for Mete-
orology”

Y

contact U cmip6-mpi-
esm@dkrz.de

Y Mail adress of data creator.

B.4. Attributes recognized or required by the CORDEX standard

Global attribute. Asso-
ciated
with
topic

Example De-
fault type is
String, other-
wise mentioned.

Neces-
sary
infor-
ma-
tion

Explanation

project id E CMIP5 Y Value must be equivalent to the project
which can be found in the MIP-table
passed as argument 1.

experiment id E amip Y

realization E 1 (Integer) Y Part of the ensemble member label.

initialization method E 1 (Integer) Y Part of the ensemble member label.

physics version E 1 (Integer) Y Part of the ensemble member label.

forcing E oz N Description of forcing.

comment E N

parent experiment id E piControl (Y) Similar to experiment id but for par-
ent

parent experiment rip E r1i1p1 (Y) Parent experiment ensemble member
label.

branch time E 50 (Double) (Y) Branch time in parent.

model id M MPI-ESM Y

source M ”MPI-ESM-LR
2011; URL:
ht.... ”

Y A reference of the model.

product M output, model-
output

Y

27

Attributes recognized or required by the CMIP6 standard Tables of global attributes

references M ECHAM6:
Stevens, ...

N Citations

leap year M 2000 (Integer) N Can be specified if a specific year is
skipped independent of the calendar

leap month M 11 (Integer) N Can be specified if a specific month is
skipped independent of the calendar

cordex domain M EUR11 Y Value represents the model region and
grid spacing of the regional model.

rcm version id M v1 Y Corresponds to the version of the re-
gional climate model

driving model id M MPI-ESM-LR Y Value is the global model name provides
the forcing data for the regional model.

institude id U MPI-M Y

institution U ”Max Planck In-
stitute for Mete-
orology”

Y

contact U cmip6-mpi-
esm@dkrz.de

Y Mail adress of data creator.

B.5. Attributes recognized or required by the CMIP6 standard

Global attributes.
Default type is String,
otherwise mentioned

Asso-
ciated
with
topic

CMIP5
name if
different

Example Neces-
sary
infor-
ma-
tion

Explanation

mip era CMIP6 CMIP6 Phase of CMIP

activity id E project id CMIP Y One of the registered MIPs

experiment id E piControl Y

experiment E pre-
industrial
control

Y Description of experiment id.

realization index (inte-
ger)

E realization 1 Y Part of the ensemble member la-
bel.

initialization index
(integer)

E initiali-
zation method

1 Y Part of the ensemble member la-
bel.

physics index (integer) E physics version 1 Y Part of the ensemble member la-
bel.

forcing index (integer) E forcing 1 Y Part of the ensemble member la-
bel.

variant info E CO2 forcing
from 10
2017.

N Comment on ensemble member,
e.g. info about forcing.

comment E N

sub experiment id E none Y Used for hindcast experiments,
usually set to ”none”.

sub experiment E none Y Description of
sub experiment id.

parent activity id E CMIP (Y) Similar to activity idbut for
parent

parent experiment id E piControl-
spinup

(Y) Similar to experiment id but
for parent

28

Tables of global attributes Attributes recognized or required by the CMIP6 standard

parent source id E MPIESM-1-
2-HR

(Y) Similar to source id but for par-
ent

parent time units E ”days since
1850-01-01
00:00:00”

(Y) Similar to required time units

but for parent

parent variant label E parent experi-
ment rip

r1i1p1f1 (Y) Similar to variant label but
for parent

branch method E - (Y) Procedure of branching members
from spin-ups or parents.

branch time in child E 40 (Y) Time value relative to
required time units.

branch time in parent E branch time 10 (Y) Time value relative to
required time units of parent

grid G Regridded
on 2 degree

Y Information about the grid de-
fined as grid label

grid label G gr Y Grid identifier. gn is the native
grid, gr would be regridded.

nominal resolution G 50km Y ”Rounded” mean over all grid
points of the longest distance of
grid point vertices distances.

source id M model id MPIESM-1-
2-HR

Y One of the registered models.
Typical format is: <name>-
<version label>- <resolution>.
Does not contain a ’ ’ in order
to have a clear file name and file
path structure.

source M MPIESM-
1-2-
HR(2017)...

Y Long description of the model.

source type M AOGCM Y Short form of which submod-
les (atmosphere model, ocean
model, ...) took part in the sim-
ulations.

references M Wachsmann
(2017)

N

institution id U institude id MPI-M Y One of the registered institu-
tions.

institution U Max-Planck-
Institude for
Meteorology,
Hamburg
20146, Ger-
many

Y Long form of institution id.

license U CMIP6
model data
produced
by DKRZ is
licensed ...

Y Must match a long regular ex-
pression.

contact U N

29

C. Script to install cdo with CMOR support on
a unix system

#!/bin/sh

#Choose your installation directory HOME:

HOME=/home/

#Download the packages zlib-1.2.8, hdf5-1.8.13, expat-2.2.0, udunits-2.2.20,

uuid-1.6.2, netcdf-4.4.1.1, jasper-1.900.1, grib_api-1.14.4-Source

and, of course, cmor2_v292 and cdo-1.8.0rc5 to $HOME

cd zlib-1.2.8/

./configure --prefix=${HOME}

make; make check; make install

cd ../

cd hdf5-1.8.13/

./configure --with-zlib=/${HOME} --prefix=${HOME} CFLAGS=-fPIC

make; make check; make install

cd ../

cd expat-2.2.0/

./configure --prefix=${HOME} CFLAGS=-fPIC

make; make check; make install

cd ..

cd udunits-2.2.20/

CPPFLAGS=-I${HOME}include LDFLAGS=-L${HOME}lib

./configure --prefix=${HOME} CFLAGS=-fPIC

make; make check; make install

cd ..

cd uuid-1.6.2/

./configure --prefix=${HOME} CFLAGS=-fPIC

make; make check; make install

cd ..

cd netcdf-4.4.1.1/

CPPFLAGS=-I${HOME}include LDFLAGS=-L${HOME}lib

./configure --prefix=${HOME}

--enable-netcdf-4 CFLAGS=-fPIC

make; make check; make install

cd ..

cd jasper-1.900.1/

./configure --prefix=${HOME} CFLAGS=-fPIC

make; make check; make install

cd ..

30

Script to install cdo with CMOR support on a unix system

cd grib_api-1.14.4-Source

./configure --prefix=${HOME} CFLAGS=-fPIC --with-netcdf=${HOME} --with-jasper=${HOME}

make; make check; make install

cd ..

cd cmor2_v292/

CFLAGS=-fPIC CPPFLAGS=-I${HOME}include LDFLAGS=-L${HOME}lib

./configure --prefix=${HOME}local

--with-udunits2=${HOME} --with-uuid=${HOME} --with-netcdf=${HOME}

make

make install

cd ..

cd cdo-1.8.0rc5

CPPFLAGS="-I${HOME}include -I${HOME}include/cdTime" LDFLAGS="-L${HOME}lib"

./configure --prefix=${HOME}

--with-cmor=${HOME}local LIBS="-L${HOME}/lib -lnetcdf -ludunits2 -luuid"

--with-netcdf=${HOME} --with-jasper=${HOME} --with-hdf5=${HOME}

--with-grib_api=${HOME} --with-udunits2=${HOME}

make -j8

cd ..

31

	Introduction
	Installation
	DKRZ system
	Local installation
	Using Conda
	Using build script

	Usage
	Syntax
	Examples

	MIP-table
	Why no name specification for the output file?

	Configuration
	Info table
	Examples
	Global attributes

	Variable mapping
	Using the command line
	Using a mapping table file
	Examples

	Coordinates
	Grid info file
	Time axis
	Scalar axes
	Labeled axes
	Vertical parametric axes

	Output control
	Append mode
	Examples

	Internal procedures
	Time coordinate
	Spatial boundaries

	Table of all keywords except global attributes
	Tables of global attributes
	Keywords to simplify global attribute configuration
	Unrestricted global attributes
	Attributes recognized or required by the CMIP5 standard
	Attributes recognized or required by the CORDEX standard
	Attributes recognized or required by the CMIP6 standard

	Script to install cdo with CMOR support on a unix system

