
Make Experiments!
Run-script generation for earth system models

Release 1.4.0
Karl-Hermann Wieners

Max-Planck-Institut für Meteorologie
Hamburg

Table of Contents
1 Introduction..4

1.1 Example: ECHAM experiment setup...4
1.1.1 Experiments are defined by custom and default settings...............................4
1.1.2 Job templates are completed by settings to create scripts..............................5
1.1.3 Generating scripts only refers to the custom settings' file..............................7

2 Details on experiment definition...7
2.1 Design...7
2.2 Tools...8
2.3 Format of .config files..10

2.3.1 Variables...10
2.3.2 Sections...11
2.3.3 Special variables and sections..12
2.3.4 Variable interpolation..13
2.3.5 Evaluation of interpolation...14
2.3.6 Incremental changes to list values...15
2.3.7 Special expressions..16

2.4 Format of .tmpl files..17
2.4.1 Placeholders..17
2.4.2 Variables in sections..17
2.4.3 Expressions...18
2.4.4 Loops...19
2.4.5 Conditions...19
2.4.6 Comments...20
2.4.7 Block statements and block comments...20

2.5 Standard experiments...20
2.6 Standard options...21

2.6.1 Options set due to model configuration..21
2.7 Generating jobs..21

2.7.1 Changing the model job list...22
2.7.2 Pre-defined job variables...23
2.7.3 Overriding namelist settings in derived jobs...23
2.7.4 Native script variables...24
2.7.5 Initializing native script variables..25
2.7.6 Re-generation of scripts and backup..25

2.8 Standard environments..26
2.9 Defining namelists and other configuration files..26

2.9.1 Formatting the namelist information...27
2.9.2 Suppressing namelist files, groups, or variables...27
2.9.3 Comments in namelists...28
2.9.4 Derived namelist groups..29
2.9.5 Repeated namelist groups, auto-derivation...29
2.9.6 Using the namelist text...30
2.9.7 Using native script variables in namelists...32
2.9.8 Non-namelist parameter files..32
2.9.9 Access full configuration in parameter files - and namelists........................32

2.10 Defining input files for an experiment...32

2 2023-11-14, 10:55:41

2.10.1 Overriding input files for certain jobs..33

3 2023-11-14, 10:55:41

1 Introduction
Running a numerical earth system model experiment requires a number of
preparatory and processing steps like staging input data files, providing namelists and
other configuration data, housekeeping duties like model-time management, post-
processing and storing of output data. These steps are usually put into scripts or
another kind of job description that is finally executed on some high-performance
computing system.

The Make Experiments! (mkexp) toolbox provides a generic interface to setting up
such an experiment. At the heart of this lies the so-called .config file. This is a simple
text file that contains the model settings for your experiment in a way that is largely
independent of the job description that is later used to run it.

To make this an easy task, MPI-M's models are delivered with a number of standard
experiment types. Your own .config file will chose one of these, thus inheriting their
settings for use in your experiment. Typically, it will also override or amend these
settings for the purpose of your experiment.

While the .config file contains all necessary settings, there is much more to the actual
job description. Therefore, the standard experiment types also provide templates
(.tmpl files) for the jobs to run, that are then converted to the final job step
descriptions, using the .config file settings. Besides, the .config file contains a 'jobs'
section, where the job control flow and parameters of the job description itself may be
adjusted, e.g. requiring more resources or disabling certain job steps.

1.1 Example: ECHAM experiment setup
To illustrate the way mkexp works, let us look at the way that experiments with
ECHAM, MPI-M's atmospheric circulation model, are set up.

1.1.1 Experiments are defined by custom and default settings

ECHAM comes with five pre-defined experiment types, amip-LR, amip-MR, amip-HR,
sstClim-LR and sstClim-MR. To set up an experiment based on one of these, like amip-
LR, all you have to do is create your own experiment configuration file within
ECHAM's run subdirectory, e.g. 'joe1234.config', setting amip-LR as experiment type
and providing an experiment description with the header comment:

Standard AMIP experiment as baseline for further experiments (LR)

EXP_TYPE = amip-LR

For each experiment type, you will find a .config file in the run/standard_experiments
subdirectory. For instance, 'amip-LR.config' includes these settings

Default definitions for amip-LR experiments

4 2023-11-14, 10:55:41

RES = 63

[namelists]

 [[namelist.echam]]
 [[[runctl]]]
 lamip = true

 [[namelist.jsbach]]
 [[[jsbach_ctl]]]
 use_dynveg = false

As you can see, settings are simple name = value pairs that may be organized in
sections. Sections are defined by a bracketed section name. They may contain
subsections, where the number of brackets defines the hierarchy depth. The pre-
defined sections [namelists] and [jobs] are used for special purposes within mkexp.

Some settings apply to all ECHAM experiment types. They go into a file named
'DEFAULT.config'. mkexp will always read this file first, before applying any settings
from a specific experiment type like 'amip-LR.config'. Such settings might be default
paths for input data, as in

Default definitions for all ECHAM experiments

ATMO_INPUT_ROOT = /pool/data/ECHAM6/input/r0004
LAND_INPUT_ROOT = /pool/data/JSBACH/input/r0004

The final configuration is then merged from all of these three sources, where the
experiment configuration may override or amend settings from the experiment type,
and the type config may in turn change the model defaults.

1.1.2 Job templates are completed by settings to create scripts

Now the experiment configuration is finalized, the settings are used to fill in a kind of
job description forms, so called templates, from which eventually the actual job
description files are created. As the structure of jobs is largely independent of the
model resolution, all amip- experiment types share the same set of template files. One
of them is 'amip.run.tmpl', also within the run/standard_experiments subdirectory.
The excerpt below shows that this looks mostly like a shell script, but contains
placeholders that are filled using the .config file information:

#! /bin/bash

Job file to run ECHAM 6

EXP=%{EXP_ID} # experiment identifier

RES=%{RES} # experiment truncation

absolute paths to directories with initial data:
ATMO_DATA=%{ATMO_INPUT_ROOT}
ATMO_MAP_DATA=$ATMO_DATA/T${RES}

5 2023-11-14, 10:55:41

absolute path to directory with initial data for JSBACH:
LAND_MAP_DATA=%{LAND_INPUT_ROOT}/T${RES}

ECHAM6 namelist

cat > namelist.echam << EOF
%{NAMELIST_ECHAM}
EOF

JSBACH namelist

cat > namelist.jsbach << EOF
%{NAMELIST_JSBACH}
EOF

These '%{...}' constructs correspond to the configuration settings shown in the previous
section. The value for the setting given by the variable name between '%{' and '}' is
pasted into the template, replacing the placeholder. The special names
'NAMELIST_ECHAM' and 'NAMELIST_JSBACH' contain the contents of the
'namelists' subsections, with each setting taken to be a Fortran namelist setting, and
formatted accordingly. 'EXP_ID' is taken to be the base filename of the
experiment's .config file. The result of this operation is then written to the final job
script, in our case 'joe1234.run':

#! /bin/bash

Job file to run ECHAM 6

EXP=joe1234 # experiment identifier

RES=63 # experiment truncation

absolute paths to directories with initial data:
ATMO_DATA=/pool/data/ECHAM6/input/r0004
ATMO_MAP_DATA=$ATMO_DATA/T${RES}

absolute path to directory with initial data for JSBACH:
LAND_MAP_DATA=/pool/data/JSBACH/input/r0004/T${RES}

#
ECHAM6 namelist

cat > namelist.echam << EOF
&runctl
 lamip = .true.
/
EOF

JSBACH namelist

cat > namelist.jsbach << EOF
&jsbach_ctl
 use_dynveg = .false.

6 2023-11-14, 10:55:41

/
EOF

1.1.3 Generating scripts only refers to the custom settings' file

So, as soon as you have set up 'joe1234.config', you may create the job scripts that are
needed to run your experiment. Still within ECHAM's 'run' subdirectory, type the
following into your terminal:

../util/mkexp/mkexp joe1234.config

This will read all configuration information and create all job scripts that are defined
within your experiment's setup, using their respective templates as shown in the
previous section. mkexp will put these scripts in a common directory defined by
the .config variable 'SCRIPT_DIR', and print the name of this directory on your
terminal.

2 Details on experiment definition
With the introductory example of the previous section in mind, this section will give
some more detailed information on specific aspects of mkexp.

2.1 Design
Experiment definition with mkexp is organized in three levels.

The first level is the mkexp toolbox. It provides the front end to create an executable
job description from a generic experiment configuration, but does not contain any
model specific information. Instead a basic set of conventions is defined that should be
applicable to a very large range of model systems. When this document uses the term
mkexp, it refers to this system level.

At a second level, a model needs to provide a number of files containing the
information needed by mkexp: the required job steps and their interaction, the basic
contents of job scripts, model specific information, and building blocks that may be
combined to define a specific experiment. This is called the model setup. The files must
maintain the naming conventions prescribed by mkexp.

Finally, the third level is the actual experiment definition. Here the user decides which
of the building blocks from the previous level are needed, and defines experiment
specific settings that override or amend the information from the model setup. It is
also essential to supply an experiment description and a – possibly unique –
experiment identifier. All this is called the user setup.

All levels should make a clear distinction between the .config files, containing the
experiment's configuration information, and the .tmpl files, containing the actual job
description and job control syntax.

7 2023-11-14, 10:55:41

2.2 Tools
The mkexp package provides a number of tools for working with script configurations
and setups.

mkexp [-m] [-g] file.config [name=value ...]

This is the main tool for generating an experiment setup. It takes the given user
setup and the model setup that is referenced by the user setup to generate the job
description files or scripts that are required to run a model experiment as
specified in file.config.
When running, mkexp creates three directories, one each for the job scripts, run-
time data, and output data, as defined by the setup. The names of these are
printed, plus warnings if they already exist.
mkexp allows to override or amend the .config file settings on the command line
by defining or re-defining a variable name set to value. Section variables are
referenced as sectionname.variablename. Any periods in the variable name have
to be duplicated, e.g. to set '.remove' in section 'jobs' to 'post', use
'jobs...remove=post'. Note that three periods will always be read as '.' followed by
'..', thus it is not possible to use variable names that end in a period.
When given the '-m' or '--no-make-dirs' option, only the script directory is created
while creation of the run-time and output directories is skipped.
With '-g' or '--getexp', instead of a .config file, mkexp expects a dump generated by
getexp -vv (see below). The experiment setup is regenerated from this dump,
overriding any model setup.

getexp [-v ...] [-R] [-k key] file.config [name=value ...]

getexp reads the experiment setup the same way as mkexp, but does not generate
job scripts. Instead it prints the experiment name and directories to be generated
in a shell-readable form. It is intended for debugging or passing setup
information to utility scripts.
When given the '-v' or '--verbose' option, all global configuration variables and
their values are printed in alphabetical order. When given twice, the whole
configuration is dumped to the screen. Save this to a file for use with mkexp -g.
When given the '-R' or '--readme' option, the header comment text is printed.
When given the '-k' or '--key' option, only the configured value for key is printed.
Section variables may be referenced as described above for name=value. This
option may be used more than once to print additional values.

diffexp file1.config file2.config

For an easy comparison of the whole set of generated scripts for two different
experiments, this tool takes the directories defined in each configuration, locates
the job scripts corresponding to each other (e.g. exp0001.run and exp0002.run),
equalizes all occurrences of the experiment name in the scripts and then uses the
diff tool to show differences. The environment variable 'DIFF' may be set to an
alternative tool to be called instead.

rmexp file.config [name=value ...]

This allows interactive removal for all data of an experiment without having to

8 2023-11-14, 10:55:41

deal with path names, as these are read from the configuration.
cpexp [-n] file.config new_name [name=value ...]

Replicates all data of an experiment to a new experiment name; also updates text
files by rewriting references to the old name. With '-n', shows what would be done
instead of actually doing it

duexp file.config [name=value ...]

Shows disk usage for all data that has been created by an experiment.
upexp file.config [name=value ...]

Update generated scripts for the given experiment with the same mkexp version,
environment and command line, as saved in the corresponding 'update' script.

editexp [file]

Reads the update script file ('update' by default) and launches a program to edit
the corresponding config file. The program is taken from the environment
variables 'VISUAL' or 'EDITOR' if defined, otherwise vi is launched.

getconfig [file]

Documentation tool for experiments that were created using command line
assignments. Reads the update script file ('update' by default) and prints the
corresponding config file with command line settings from the update script
included.

setconfig [-d key] [-H text] [-a file.config] [file.config [name=value ...]]

Filter tool to alter configuration files via command line. Reads file.config
(standard input by default or if file.config = '-') and prints the filtered
configuration to standard output. Add or alter variables by name=value as
described before. With '-d' or '--delete', the variable key is removed from the
configuration. With '-H' or '--header', text is appended to the configuration's
header comment. For files given with '-a' or '--add', all settings are merged with
file.config.

selconfig [-t] [-c] section [file.config]

Filter tool to extract sections from configuration files via command line. Reads
file.config (standard input by default or if file.config = '-') and prints the filtered
configuration to standard output. section is specified as described for mkexp. With
'-t' or '--trailing-space', trailing space is removed from the output lines. With '-c' or
'--inline-comments', multiple spaces between a variable value and an inline
comment are reduced to a single space.

compconfig [-t] [-c] file1.config file2.config [file.config ...]

Filter tool to select all settings from file1.config that are common to file2.config
and every file.config. Useful to extract a default config for a number of experiment
type configs. Takes the same options as selconfig.

diffconfig [-t] [-c] file1.config file2.config

Filter tool to remove all settings from file1.config that are duplicated in
file2.config. Useful to check new experiment type configs against the default

9 2023-11-14, 10:55:41

config. Takes the same options as selconfig.
unmergeconfig [-t] [-c] file1.config file2.config

Filter tool to substitute literal settings in file1.config by the corresponding
variable references as defined in file2.config. From file2.config, only settings like
var1 = $var2 or var1 = ${var2} are considered. Useful to create a new experiment
type config from importexp output by running it against the default config. Takes
the same options as selconfig.

importexp [option ...] run_script [run_script ...]

Runs the given runscripts in a sandbox and tries to extract namelists and files
from the resulting log file by use of namelist2config and files2config. The resulting
config is written to standard output. Note that this is tailored to ICON scripts,
and must be called from the 'run' directory. For out-of-source builds, this must be
located under the build directory and the '-b' option is mandatory. Options are
-b build_subdir: set name of build subdirectory [none]
-d data_base_dir: change base of data directory [derived from run_script]
-D data_dir: change data directory explicitly [derived from run_script]
-e environment: set ENVIRONMENT for the resulting config [levante]
-i: in the resulting config, create an 'intake' job only, ignore the standard jobs
-s custom_subdir: needed if scripts were moved from the run directory
-t exp_type: set EXP_TYPE for the resulting config [DEFAULT]
-c cpus_per_node: set alleged number of cpus per node [256]
-x: debug mode, do not remove temporary files, nor the sandbox directory

namelist2config [-d [-c] [-v]]

Tries to extract namelist settings from shell scripts or log files and converts them
to the .config format. By default, comments are ignored and names of namelist
groups and variables sorted to allow easier comparisons. With '-d', namelists are
printed directly, in original order. In this mode, '-c' enables comments, '-v' will
output non-namelist lines from input files as comments, prefixed with '###'.

files2config [-d] [-x]

Tries to extract input file operations from shell scripts or log files and converts
them to the .config format. By default, file names are sorted to allow easier
comparisons. With '-d', namelists are printed directly, in original order. Use '-x'
when processing log files from shell scripts run with the 'xtrace' or '-x' option.

2.3 Format of .config files
The .config files are simple text files containing a dictionary of variables with their
respective values. They may be structured using sections and comments. For reading
these files, mkexp uses the configobj Python library. All settings found in the .config
files are handled as Python variables internally.

2.3.1 Variables

A configuration variable is set by simply assigning a text value to a name, as in

10 2023-11-14, 10:55:41

NAME = Joe User

Note that spaces before and after the 'equals' sign are always ignored. The value starts
with the first non-space character. Spaces and additional equals after this are part of
the value. In the case above, the variable NAME is set to 'Joe User'. To include leading
spaces, you may enclose the actual value in single or double quote characters as in

SEPARATOR = ' '

Comma separated values are taken to be a list of string values. Thus

PATH = /bin, /usr/bin, /usr/local/bin

will set PATH to the list ('/bin', '/usr/bin', '/usr/local/bin').

2.3.2 Sections

Variable assignments may be contained in sections. They group a set of variables that
may be treated in a way different from the global variables. Sections are created by a
section name on a line by itself, enclosed by brackets. Any variables defined later in the
.config file belong to this section:

[section1]
 description = This is the first section

will be stored as a dictionary section1 with section1['description'] set to 'This is the
first section'.

Sections may be nested to arbitrary depth by incrementing the number of bracket
pairs as in

[section1]
 description = This is the first section
 [[subsection1a]]
 description = This is the first sub section of the first section
 [[subsection1b]]
 description = This is the second sub section of the first section
[section2]
 description = This is the second section

A section is closed by the beginning of a new section of the same level, by a section of
lower nesting depth, or the end of the .config file. Thus, section1 will contain
'description' and two dictionaries 'subsection1' and 'subsection2', each of those
containing their own 'description'. 'section2' then is a top-level dictionary, again with
its own 'description' variable.

Note that indentation may be used to make the file more legible but is completely
ignored when the file is loaded. The number of brackets is the only way to define the
level of a section. This means that all variables in a section must be defined before any
subsections. Otherwise, the variable would belong to the respective subsection.

11 2023-11-14, 10:55:41

Fortran scholars will also want to note that names are case-sensitive, i.e. the variable
'NAME' is quite different from 'name'. Usually, setups use upper-case names for global
variables and lower-case names for sections and their variables.

2.3.3 Special variables and sections

There are a number of special variables that influence the way mkexp works. They
must be present in one of the .config files, unless noted otherwise below. They are
listed here for a first overview. Their exact meaning is explained in more detail in the
upcoming sections.

The first set of variables is usually defined in the model setup:

SCRIPT_DIR
Directory where the generated job descriptions are stored. This directory and its
parents are created by mkexp if they do not exist.

WORK_DIR
Directory where the experiment is run. The jobs will use this for providing input
data and configuration files needed for model execution. This directory and its
parents are created if they do not exist.

DATA_DIR
Directory for storing output data. When a model run finishes, output will be
stored there for further processing. Will also be created when non-existent.

EXP_DIR_NAMES
List of variables that contain additional directories to be created when non-
existent

VERSION_
Each .config file in the model setup should set this variable to a suitable value,
e.g. version control information. The values are collected in a variable
'VERSIONS_' which is usually written to the resulting job descriptions.

SETUP_OPTIONS (optional)
Subset of the model's standard options that should be applied to all experiments
using the same model version.

There is a second set of variables that belongs in the user setup:

EXP_TYPE
Selects one of the standard experiments that are pre-defined in the model setup
as basis of the current experiment definition.

ENVIRONMENT
Selects one of the standard host environments that are available for the model.

EXP_OPTIONS (optional)
Subset of the model's standard options that should be applied to the current
experiment definition.

EXP_ID (optional)
Name of the experiment to be created. If not set, this will be set to the base name
of the user's .config file, e.g. 'joe1234' in the introductory example. All job
description files will carry this as the first part of their name. For almost all
model setups, this will be used in the definitions of SCRIPT_DIR, WORK_DIR,
and DATA_DIR.

12 2023-11-14, 10:55:41

EXP_DESCRIPTION (optional)
Extensive description of the experiment to be created. If not set, this will contain
all text in the header comment of the user's .config file. The leading comment
characters, as well as leading and trailing empty lines or comment boilerplate are
removed. Note that both header comment and EXP_DESCRIPTION may
reference any other global variable defined in the experiment configuration (see
section 2.3.4).
The contents of this variable is written to a 'README' file in SCRIPT_DIR.

Another set of variables is automatically added to the job specific experiment
configuration. These are considered read-only and may not be altered.

JOB
A dictionary of system settings pertaining to the current job.

VARIABLES_
List of all names that were recognized as native variables of the current job. May
be used to maintain a variable definition list in the generated script.

mkexp_input
Descriptive string for script headers. It is set to 'Generated by … mkexp …' where
the ellipses are filled with version information.

VERSIONS_
List of all 'VERSION_' strings that were found in the different .config files.

These special sections are usually pre-defined in the model setup, but are commonly
altered by the user.

[jobs]
This section defines the job description set needed for an experiment. It also
provides job specific settings. Details are given in section 2.7, 'Generating jobs'.

[namelists]
Information that is contained in model configuration or namelist files is set in this
section. For further details see section 2.9, 'Defining namelists and other
configuration files'.

[files]
All input files that are needed for an experiment and information to provide them
go into this section. See section 2.10, 'Defining input files for an experiment'.

2.3.4 Variable interpolation

The value of a .config variable may reference the value of another variable by prefixing
its name with a dollar sign. This is called interpolation of variables. E.g.

joe1234.config
WORK_ROOT = /scratch/joe
WORK_DIR = $WORK_ROOT/experiments/$EXP_ID

will set 'WORK_DIR' to '/scratch/joe/experiments/joe1234'.

Interpolation only works for variables of the current section or its ancestor sections.

[ensembles]

13 2023-11-14, 10:55:41

 size = 42
[jobs]
 ensemble_size = $size

will fail with

Oops: missing option "size" in interpolation while reading key
'ensemble_size'

because 'size' is not defined in 'jobs', nor on the global level.

As in shell scripts, the variable name must be enclosed in braces if the interpolation
continues with a word character (alphanumerical or underscore), or if the variable
name contains a space (which is perfectly legal):

WORK_DIR = /tmp/$EXP_ID_test # ERROR: missing option "EXP_ID_test"
WORK_DIR = /tmp/${EXP_ID}_test # OK

SPACY VAR = Whew!
MESSAGE = He said: $SPACY VAR # ERROR: missing option "SPACY"
MESSAGE = He said: ${SPACY VAR} # OK

The user's environment variables may be referenced as global variables in a .config file.
Thus a user may write something like

SCRIPT_ROOT = $HOME/experiments/$EXP_ID

setting 'SCRIPT_ROOT' to a subdirectory of the user's home directory.

2.3.5 Evaluation of interpolation

While interpolation looks a lot like in shell scripts, there is a major difference. Shell
variables are immediately interpolated when their value is set. mkexp interpolation is
deferred, it only takes place when the value of a variable is queried, similar to
variables in Makefiles. This has the advantage that the model setup may define
settings based on variables that are only defined later in the user setup.

model setup
MODEL_DIR = $HOME/$MODEL_SUBDIR

user setup
MODEL_SUBDIR = echam

Here, as the model setup is read before the user setup, 'MODEL_SUBDIR' is not set
when 'MODEL_ROOT' is defined. This works, because interpolation of
'MODEL_ROOT's value is postponed until all levels of setup have been read.

The disadvantage is that there may be no incremental adding of values to a given
variable because this would cause circular dependencies. Imagine

SUBMODELS = $SUBMODELS jsbach

14 2023-11-14, 10:55:41

When mkexp tries to evaluate 'SUBMODELS', it sees that it needs to do an
interpolation; but to do this interpolation, 'SUBMODELS' would need to have been
evaluated already! So this results in

Oops: interpolation loop detected in value "SUBMODELS" while reading key
'SUBMODELS'

2.3.6 Incremental changes to list values

For list variables, mkexp allows to lift the restrictions imposed by the deferred
interpolation. Items may be added to or removed from list valued variables by using +=
or -= instead of the usual = assignment, and modified by using >= before>after. This
is most useful in user config or option files that want to alter list variables from the
standard model settings without having to repeat the unchanged items

model setup
SUBMODELS = ocean, hamocc

user setup
SUBMODELS += atmo, jsbach
SUBMODELS -= hamocc
SUBMODELS >= jsbach>mozart, an>

will first append 'atmo' and 'jsbach' to the 'SUBMODELS' list, then remove 'hamocc',
and finally rename 'jsbach' to 'mozart' before removing 'an' from every item. The
resulting list is ('oce', 'atmo', 'mozart')

Using these operations on empty or single valued variables will change them to be
lists; removing all items still leaves an empty list, which is not quite the same as an
empty variable.

Incremental changes require the variable to be interpolated before the addition or
removal can take place. Otherwise, we would run into an interpolation loop as
described in the last section. Thus incremental changes switch a variable from
deferred to immediate interpolation. This also means that the order of assignments
becomes significant.

SUBMODELS = 'atmo'
SUBMODELS += 'ocean'
SUBMODELS -= 'ocean' # removes what we just added

results in ('atmo'), while

SUBMODELS = 'atmo'
SUBMODELS -= 'ocean' # attempts to remove non-existent items are ignored
SUBMODELS += 'ocean'

gives ('atmo', 'ocean')

15 2023-11-14, 10:55:41

2.3.7 Special expressions

For some applications, simply including some other variable is not enough. You might
want to compute a time limit from a given constant divided by the number of
computing nodes, or convert a time stamp to a list of values. For these purposes,
mkexp includes some special expressions, that are evaluated when interpolation
occurs.

variable = eval(expression)
variable = evals(expression)

Interpret expression as a valid Python expression and assign the result to
variable as a string. The modules 'os', 're' and 'time' may be used in expression.
Besides, a predicate 'is_set' is available to test if a string evaluates to true when
used as namelist logical, returning false when used on 'None'.
When the result is a list, eval will return a list of strings, while evals will return a
single string, where elements are joined by a comma and a space.
Note that interpolation does not work for list values; if you need this, consider to
set the original variable to a string containing a Python list expression, and then
use eval around the interpolation expression:
DATE_STRING = '[2010, 10, 20]' # need quotes here!
DATE_LIST = eval($DATE_STRING) # becomes a 3 element list

variable = read(file_name)

Read the contents of the file file_name and assign its contents to variable as a
string.

variable = split_date(timestamp)

Take timestamp and split it into a list of numerical date/time elements.
timestamp must have an ISO-like format (date elements separated by '-'; 'T' or
space as date/time separator; time elements separated by ':'; trailing time
elements and their separators are optional; time zone indicator is not supported).
Unlike ISO, split_date also allows the date to be in the form YYYYMMDD. Unset
fields default to zero.

variable = sec2time(second_of_day)

Take integer second_of_day (from 0 to 86399) and return the corresponding time
stamp as string of the form HH:MM:SS.

variable = 'add_years(datestamp, offset)'

Take integer offset (may be negative), add it to the year portion of datestamp and
return the resulting date string.

variable = 'add_days(datestamp, offset)'

Take integer offset (may be negative), add it to the day portion of datestamp and
return the resulting date string. Year and month portions will be set as
appropriate, assuming a Proleptic Gregorian calendar with year 0.

16 2023-11-14, 10:55:41

2.4 Format of .tmpl files
The .tmpl files are also text files mostly written in the syntax of the job description
that mkexp is meant to create. Currently this is usually the ksh or bash shell script
syntax, but may also be any other interpreted language, like Perl or Python, or even a
configuration or namelist file. The main difference are placeholders and structured
comments that are embedded in the program text. These are evaluated or expanded
using the information that comes with the .config files, to create the final text files,
defining the jobs to be run on the target system.

The expansion of .tmpl files into the job description uses the Jinja Python library. It
provides a default set of facilities that can be used to expand any textual template. The
proposed default syntax was slightly customized to fit the needs of mkexp.

2.4.1 Placeholders

The simplest interaction in a template is replacing a template's placeholder by a value
from a .config file. Any name enclosed by '%{' and '}' is taken to be a configuration
variable, like in the snippets below:

#! /bin/ksh
This script was created by %{NAME}

Here, the placeholder requests the 'NAME' variable which was set to 'Joe User' in the
example .config file of section 2.3.1. This value is now looked up in the configuration
and used to textually replace the placeholder expression, yielding the final text:

#! /bin/ksh
This script was created by Joe User

2.4.2 Variables in sections

To request a variable within a section, simply prepend the section name to the variable
name, using '.' as separator, as in

%{section1.description}

This is also used for nested sections:

%{section1.subsection1a.description}

For section names that contain a '.' or spaces (like 'namelist.echam' in the introductory
example), instead of the '.' separator, the section name is given as a quoted string in
brackets (similar to Python's dictionary syntax):

IS_AMIP_RUN=%{namelists['namelist.echam'].runctl.lamip}

17 2023-11-14, 10:55:41

2.4.3 Expressions

The placeholders may also contain more complex expressions, using a limited set of
operations that is defined in the Jinja documentation. Among these are

LITERAL_STRING=%{'hello'}
LITERAL_INTEGER=%{42}
LITERAL_FLOAT=%{21.5}
LITERAL_LIST=%{['hello', 42, 21.5]}
LITERAL_BOOLEANS=%{false} # Always lower-case!
ARITHMETIC=%{2 + 2 * 2 – 2 / 2} # is 5
STRING_TOGETHER=%{NAME ~ ', employee number ' ~ 42} # Converts 42 to string
LIST_ELEMENT=%{PATH[0]} # indices start with 0
LIST_SUBLIST=%{PATH[1:3]}
FILTERED_STRING=%{NAME | lower()} # is 'joe user'

The last example allows for a number of predefined filters instead of 'lower'. These are
described in the Jinja documentation (List of Builtin Filters). Besides, mkexp defines
a number of additional filters:

split(s=none, m=-1)

cuts the input string at all occurrences of s, returning a list of substrings. If s is
none, substrings are delimited by white space. If m is positive or zero, it cuts only
at the first m occurrences; the last element contains the remaining substring:
%{ 'A·B··C' | split('·') } → ['A', 'B', '', 'C']
%{ 'A·B··C' | split() } → ['A', 'B', 'C']
%{ 'A·B··C' | split('·', 1) } → ['A', 'B··C']

filter()

removes empty elements from the input list:
%{ ['A', '', 'C'] | filter() } → ['A', 'C']

match(regexp, default='')

returns the input string, if regexp matches somewhere in it. If regexp contains
matching groups (parentheses), the substring matching the first group is
returned. If no match is found, the default string is returned:
%{ 'Douglas Adams' | match('Adam') } → 'Douglas Adams'
%{ 'Douglas Adams' | match('Eve') } → ''
%{ 'Douglas Adams' | match('Abel', 'Cain') } → 'Cain'
%{ 'Douglas Adams' | match('l(.*)m') } → 'as Ada'

wordwrap(width=79, break_long_words=true, break_on_hyphens=true,
 wrapstring=none)

replaces the builtin Jinja filter 'wordwrap' by a private version that allows to
suppress breaks on hyphens:
%{'long-hyphenated-text'|wordwrap(15, false)}
→ 'long-
 hyphenated-text'

18 2023-11-14, 10:55:41

%{'long-hyphenated-text'|wordwrap(15, false, false)}
→ 'long-hyphenated-text'

2.4.4 Loops

Text in a template may be used repeatedly, like a classical 'for' loop. Loops are defined
by structured comments i.e. lines beginning with '#%'. They start with '#% for … in …:'
and end in '#% endfor':

#% for countdown in [3, 2, 1, 'liftoff']:
echo %{countdown}
#% endfor

will be expanded by mkexp to yield

echo 3
echo 2
echo 1
echo liftoff

You may of course use expressions in the loop definition. For classical, index based
loops, there is a 'range' function as in Python, and the size of a list is queried with the
'length' filter.

#% for index in range(1, PATH|length()) # PATH was defined in 2.3.1
echo %{index}: %{PATH[index]}
#% endfor

Note that indexing of lists starts at 0, i.e. the first element of the PATH list is skipped.
Besides, the stop index is not included, i.e. as PATH has a length of 3, the last looping
has index 2:

echo 1: /usr/bin
echo 2: /usr/local/bin

2.4.5 Conditions

A template may contain alternative parts that are selected depending on the .config
data, similar to an 'if' statement. This is useful for e.g. skipping certain parts of the
script template that are not applicable to runs of a given resolution but required for
others. They are also implemented as structured comments, starting with '#% if …:'
and ending in '#% endif', with optional '#% elif …:' and '#% else:' parts.

For testing, you may use expressions with comparisons (==, !=, >, >=, <, <=), querying
a certain list element (… in …), and logical operators (and, or, not). Sub-expressions
may be parenthesized to change the order of evaluation. Besides, Jinja provides a
number of named tests that use the '… is …' Syntax.

#% if PATH|length() is divisibleby 3:
diff3 %{PATH[:3]|join(' ')}

19 2023-11-14, 10:55:41

#% elif PATH|length() is even:
diff %{PATH[:2]|join(' ')}
#% else:
echo cannot handle PATH
#% endif

If PATH is defined as in the examples above, this will result in

diff3 /bin /usr/bin /usr/local/bin

For a list of available tests, see the Jinja documentation. Besides, mkexp defines an
additional test:

set()

tests if a string evaluates to true when used as namelist logical. Returns false
when used on an undefined variable:
'.true.' is set → true
'T' is set → true
'fAlSe' is set → false
unknown_var is set → false

2.4.6 Comments

Jinja also allows template comments that are removed when the template is expanded.
This is implemented as another kind of structured comment starting with '#%#':

This comment will make it to the expanded script
#%# This one will not make it and is for template documentation only

2.4.7 Block statements and block comments

For templates that contain more Jinja code than actual output lines, a variant of the
standard Jinja block syntax is available for both statements and comments1. Block
statements begin with '{%__mkexp__' and end with '%}', block comments begin with
'{#__mkexp__' and end with '#}'.

2.5 Standard experiments
When generating an experiment setup, mkexp expects the .config and .tmpl files to
reside in a subdirectory of the current working directory, called
'standard_experiments'.

The definition of a standard experiment type typename may consist of a configuration
in typename.config and a number of typename.jobname.tmpl files, one for each
subsection jobname of the jobs section. Before reading typename.config, the special

1 The standard Jinja comment syntax '{#' collides with the Bourne shell idiom for variable size,
'${#var}'. Standard block statement syntax '{%' gives problems when mkexp template variables '%
{var}' are used in shell variable expansions, like '${%{var}:-default}'

20 2023-11-14, 10:55:41

DEFAULT.config is loaded, containing the model default settings. Both .config
and .tmpl files may be missing; the default is to read only DEFAULT.config or the
corresponding DEFAULT.jobname.tmpl file instead.

The name of an experiment type may be of the form experimentkind-experimentquality,
as in amip-LR above. In this case, the experiment type is supposed to be of a certain
quality, like a given model resolution (LR), but to share the overall experiment
structure with all types of the same kind (amip). Therefore, the .config files take the
full name, experimentkind-experimentquality.config, whereas the templates are defined
as experimentkind.jobname.tmpl, independent of the requested quality.

An experiment configuration must contain the special variable EXP_TYPE, set to the
name of experiment type to use.

2.6 Standard options
Besides the standard experiment types, mkexp also supports option sets that are
independent of the experiment type chosen.

Usually these option sets contain a number of settings needed for a certain technical
aspect, e.g. for changing the output interval or aggregation method for output data, or
providing resolution dependent model settings. They reside in a subdirectory
'standard_options' of the current working directory, each in their respective
optionname.config file.

Within the experiment's .config file, options are selected by setting the variable
EXP_OPTIONS to the list of required option names. These settings are loaded after
the experiment type configuration but before the user defined experiment
configuration.

2.6.1 Options set due to model configuration

Some options may need to be set for all experiments that use a given model
configuration. If e.g. a part of the model is disabled at build time, the corresponding
option set should also be disabled for all experiments.

For this, the build process may write an optional file 'SETUP.config' that is read before
any type or user configuration. If this file contains the variable SETUP_OPTIONS, the
options listed there will be loaded before loading the EXP_OPTIONS list. Do not
override SETUP_OPTIONS in the user configuration unless you know what you are
doing!

2.7 Generating jobs
When running mkexp, the special configuration section [jobs] is read and evaluated.
Each of its subsections, e.g. [[run]], defines a job definition file or job script to be
created.

21 2023-11-14, 10:55:41

model setup: experiment type 'control'
[jobs]
 [[pre]]
 [[run]]
 [[post]]

For each of the jobs defined in the model setup above, there must be a template file in
the model setup, e.g. for [[run]] either as 'control.run.tmpl' or 'DEFAULT.run.tmpl'.
The corresponding file is expanded to its final form using the full experiment
configuration, as described before. Besides, the job specific variables are set and passed
according to their respective template.

The resulting job scripts are written to the directory defined by SCRIPT_DIR, e.g. as
'joe1234.run'. They are marked as being executable unless the variable '.exec' is set to
'false' as in

[jobs]
 [[info]]
 .exec = false

Besides, as mentioned before, the contents of the special variable
EXP_DESCRIPTION is written to a README file in that same directory. Also, an
update script is created that allows to re-generate all output files with identical
environment and command line settings by simply running './update' from the script
directory.

2.7.1 Changing the model job list

Usually, the job list is defined in the model setup. The user may chose to add jobs and
delete jobs from this list as appropriate. While adding a job is straightforward,
removing a job uses a special section variable '.remove' (note the leading period). It is
defined in the [jobs] section and contains a list of the jobs to be suppressed.

joe1234.config
EXP_TYPE = control
[jobs]
 .remove = post, pre
 [[my_pre]]
 [[my_post]]

This way, the 'pre' and 'post' jobs will not be created in favor of two new jobs, 'my_pre'
and 'my_post'. In this case, the user setup must provide two templates
'joe1234.my_pre.tmpl' and 'joe1234.my_post.tmpl', together with the .config file.

Alternatively, you may want to introduce a new 'my_post' job, that is basically the same
as the old 'post' job but uses a slightly different configuration. This may be done using
the special section variable '.extends'.

[jobs]
 [[my_post]]
 .extends = post

22 2023-11-14, 10:55:41

 command = $HOME/bin/my_special_command

With this configuration, an additional 'joe1234.my_post' is created based on the
existing 'post' template. A dedicated 'joe1234.my_post.tmpl' file is not needed here. The
'command' setting is made available to the template via the 'JOB' dictionary.

2.7.2 Pre-defined job variables

While mkexp in general does not impose any naming convention on the variable names
used in the job sections and leaves the details to the respective model setup, there are
a few exceptions.

tasks
The total number of parallel (MPI) tasks that will be started when running the
model. If a job section does not define 'tasks', its value defaults to 'nodes' times
'tasks_per_node'. Some models require that 'tasks' may explicitly be set to some
artificial value to trigger the testing mode.

nodes
Number of computing nodes required on the computing system. Needed if 'tasks'
is not set.

tasks_per_node
Number of parallel (MPI) tasks on a single node. Needed if 'tasks' is not set.

2.7.3 Overriding namelist settings in derived jobs

There is special provision to change namelist files settings for a specific job. Consider
this setting from the introductory example.

[namelists]
 [[namelist.jsbach]]
 [[[jsbach_ctl]]]
 use_dynveg = false

If – for some reason – your experiments needs 'use_dynveg' set to 'true' for the first
year only, you may create an additional 'run_first' job, with a job specific namelists
subsection that – apart from the additional brackets – has the same structure as the
global namelists section.

[jobs]
 [[run_first]]
 .extends = run
 [[[namelists]]]
 [[[[namelist.jsbach]]]]
 [[[[[jsbach_ctl]]]]]
 use_dynveg = true

This will result in a 'joe1234.run_first' file that is identical to 'joe1234.run' except for
the 'use_dynveg' setting.

23 2023-11-14, 10:55:41

2.7.4 Native script variables

While the definition of .config variables may use variable references like $NAME or $
{NAME} to include the verbatim value of other .config variables, this may not always
be what you want. If you want to create a job script that is supposed to be 'user-
serviceable' for certain applications, the users will not appreciate having to change the
same value several times in the same script. Instead they will want to have a single,
native script variable that is used throughout the job script, and that may be re-
defined on a single line.

To allow this, mkexp locates all expressions like $${NAME} in the configuration values,
and re-formats them to the syntax of the current job script:

joe1234.config
NAME = Joe User
MESSAGE = This experiment was generated by $${NAME}

#%# joe1234.job.tmpl
#! /bin/sh
NAME='%{NAME}'
echo %{MESSAGE}

By default, native variables are formatted as shell script, namely ${NAME}:

#! /bin/sh
NAME='Joe User'
echo This experiment was generated by ${NAME}

To support variable references for other script languages, a job specific variable
'.var_format' may be defined. It defines an output format string where any occurrence
of '%s' will be replaced by the respective variable name. For a Python based script, this
may look like:

joe1234.config
NAME = Joe User
MESSAGE = This experiment was generated by $${NAME}
[jobs]
 [[job]]
 .var_format = "' + str(%s) + '"

#%# joe1234.job.tmpl
#! /usr/bin/env python
NAME = '%{NAME}'
print('%{MESSAGE}')

This setup will expand to

#! /usr/bin/env python
NAME = 'Joe User'
print('This experiment was generated by ' + str(NAME) + '')

24 2023-11-14, 10:55:41

2.7.5 Initializing native script variables

In the previous section, the native variables were initialized by an additional script
line. While this is sufficient for a small number of variables, it may be difficult to
maintain these initialization lines for a more complex setup with changing
requirements.

To allow a self-maintaining variable list based on the current configuration, mkexp
maintains the special variable VARIABLES_. When generating output for

NAME = Joe User
EMAIL = joe@domain.tld
MESSAGE = This experiment was generated by $${NAME} <$${EMAIL}>

mkexp will parse all values, recognize 'NAME' and 'EMAIL' as native variables, and
will put their names in the VARIABLES_ list. Now we may use the 'for' template
directive to generate an additional line for each member of VARIABLES_. To query the
value for a given variable name, mkexp provides the 'context' function, such that the
template

#! /bin/sh
#%# for variable in VARIABLES_:
%{variable}='%{context(variable)}'
#%# endfor
echo "%{MESSAGE}"

eventually yields

#! /bin/sh
EMAIL='joe@domain.tld'
NAME='Joe User'
echo "This experiment was generated by ${NAME} <${EMAIL}>"

Note that the order of variable names is not necessarily the order in which they were
defined in the .config file.

2.7.6 Re-generation of scripts and backup

Even the simplest user setup may contain an error. In this case, it is considered good
practice to fix this error in the user setup, and to rerun mkexp. If you want to be really
good, you might even start a new experiment from the previous one's restart data.

As a convenient short-cut, mkexp provides the script 'update' in the script directory. It
may be called instead of going back to the 'run' and re-running mkexp directly. The
update script records all command line settings and environment settings that were
used for running mkexp so that './update' regenerates the scripts exactly as they were
created, without having to re-construct the exact settings. Like mkexp, update allows
to set or change variables on the command line, e.g.

./update FINAL_DATE=2015-12-31

25 2023-11-14, 10:55:41

may be used to regenerate scripts with a new final date. Note that these settings are
also recorded, i.e. running just './update' the next time will again set FINAL_DATE.

Of course, there is also the possibility to change the generated job scripts directly, and
then go on. This is fine as long as the required setting is using a native variable or is
otherwise easily editable. On the other hand, facing the next change, this might not be
the case, so eventually you may need to re-generate the whole thing. What now about
those manual changes to the job scripts?

Whenever mkexp sees existing job scripts while trying to generate the new description,
it will automatically create backup files. They are placed in a subdirectory of
SCRIPT_DIR, named 'backup'. Also, the scripts for each regeneration are bundled in
their own subdirectory, named after the current date-time stamp. This way you may
easily compare old and new scripts to evaluate and possibly transfer any manual
changes after a necessary regeneration.

2.8 Standard environments
The above examples neglect an important feature of job descriptions, namely the
system or machine dependent set up. Different computing centers use different job
control software and naming conventions, might provide different versions of the same
software at differing locations. This needs to be handled in a way that is independent
of the other configuration as far as possible.

For this, a standard environment, like a standard experiment, consists of a .config file
and a corresponding template. The environmentname.config file contains settings like
directory paths or a description of machine capacities for job control

The actual job control headers needed to run a certain job step are saved as
environmentname.tmpl. This template will be filled using configuration information
from both experiment, options, and environment. The resulting job header is usually
included at the beginning of the experiment's job script templates.

An experiment configuration may set the special variable ENVIRONMENT to the
name of the host environment to use. If it is not set, or empty, the 'DEFAULT'
environment settings will be used.

2.9 Defining namelists and other configuration files
Most models need at least one Fortran namelist file or another form of configuration
file to run. The special section [namelists] is designed to contain all information that
goes into these files. Each immediate subsection defines settings for a single file that
will by default be formatted as a Fortran namelist. For example,

[namelists]

 [[namelist.echam]]
 [[[runctl]]]

26 2023-11-14, 10:55:41

 lamip = true
 nproma = 48
 earth_angular_velocity = 7.3e-5
 out_expname = joe1234
 dt_stop = 2009, 1, 1, 0, 0, 0

defines a single namelist file, 'namelist.echam', containing a single namelist group
with four variables of different types. Note that you do not need to use quotes for
strings nor periods for logical values.

2.9.1 Formatting the namelist information

The names of the subsections of each namelist file entry, i.e. the second level
subsections under the immediate subsections of [namelists], are taken as namelist
group names, and their variables are formatted as fields of this namelist group. In the
example above, there is a single namelist group 'runctl', which will be converted to the
Fortran namelist convention. The values of the group's fields are checked to determine
whether they are numerical, logical, or string values. Logical and string values will
then be formatted using periods or quotes, respectively.

In the example above, the first four fields are single values of logical, integer, floating
point, and string type. The fifth is a list of integer values, that will be passed as such
to the namelist file:

&runctl
 lamip = .true.
 nproma = 48
 earth_angular_velocity = 7.3e-5
 out_expname = 'joe1234'
 dt_stop = 2009, 1, 1, 0, 0, 0
/

Please note that both group and field names are converted to lower case! Two fields
named 'key' and 'Key' will result in two 'key = …' lines, and will cause trouble. We
recommend using lower case for all group and field names.

2.9.2 Suppressing namelist files, groups, or variables

If you want to disable a namelist group or a whole namelist file defined on a higher
setup level, you may set a special variable '.hide' to 'true' in the corresponding section.
As you may suspect, setting '.hide' to 'false' for elements that were hidden on a higher
setup level will re-enable them.

To disable a single namelist variable, simply omit the value after the equals sign. This
is taken to be an empty string, causing the variable to not be written to the namelist
file, so the default value is used instead. Setting the variable to a non-empty value in a
higher level .config file will re-enable it.

If the empty string is a valid value in your namelist, you may set the special variable
'.default' to an alternative string to be used as default marker instead of the empty

27 2023-11-14, 10:55:41

string. This can be done both on namelist and group level.

As a legacy, the namelist group section also honors the special variable '.remove' which
may be set to a list of names. Any variables listed in the '.remove' variable will be
deleted from the namelist group definition. Note that, while '.remove' is useful to
suppress default settings that must not be present for the experiment setup, currently
there is no way to resurrect a removed setting in a later setup level. Therefore, its use
in model setups is strongly discouraged.

2.9.3 Comments in namelists

In general, '#' comments in namelist or group sections will by converted to Fortran 90
'!' comments. In-line comments for individual settings are also recognized.

Run time settings
[[[runctl]]]
 lamip = true # Use AMIP conventions
 # Block size for optimization
 nproma = 48

! Run time settings
&runctl
 lamip = .true. ! Use AMIP conventions
 ! Block size for optimization
 nproma = 48

In addition, mkexp recognises namelist settings that were commented out. For these,
the formatting of values as described before is also carried out within the comment.

 # lamip = true # Use AMIP conventions

 ! lamip = .true. ! Use AMIP conventions

There is one hitch: if the last setting in a group is commented, the configobj library
will take this line to be a group comment for the following group. To work around this,
mkexp recognises a special namelist variable '.end' to keep the commented setting with
the first group.

[[[parctl]]]
 # nprocb = 48 # Ends up with 'runctl' instead
[[[runctl]]]
 # lamip = true # Stays with 'runctl'
 .end =
[[[dynctl]]]

&parctl
/
! nprocb = 48 ! Ends up with 'runctl' instead
&runctl
 ! lamip = .true. ! Stays with 'runctl'
/
&dynctl

28 2023-11-14, 10:55:41

2.9.4 Derived namelist groups

Namelist groups that share information may be derived from each other by use of the
special section variable '.extends', similar to derived jobs (section 2.7.3).

[[[parent]]]
 eye_color = blue
[[[child]]]
 .extends = parent

&parent
 eye_color = 'blue'
/
&child
 eye_color = 'blue'
/

In combination with '.remove' (section 2.9.2), this may be used to define a pure base
group only to hold common settings. Note that using '.hide' will not work because it
would hide all “humans”.

.remove = human
[[[human]]]
 species = homo sapiens
[[[adam]]]
 .extends = human
 serial_number = 1
[[[eve]]]
 .extends = human
 serial_number = 2

&adam
 species = 'homo sapiens'
 serial_number = 1
/
&eve
 species = 'homo sapiens'
 serial_number = 2
/

2.9.5 Repeated namelist groups, auto-derivation

Some applications use namelists where a namelist group may be listed repeatedly and
one or more values within the group serve as key for the evaluation process. To allow
for this, mkexp recognizes name extensions for namelist group sections. The generated
namelist group will then only use the base group name, up to the first occurrence of a
space in the section name, and use the extension as a comment. Note that you may not
specify the same section name twice.

[[[output first]]]
 file_name = output1.nc
[[[output second]]]
 file_name = output2.nc

29 2023-11-14, 10:55:41

&output ! 'first'
 file_name = 'output1.nc'
/
&output ! 'second'
 file_name = 'output2.nc'
/

With repeated groups, chances are that some information is common to many of them.
Therefore, if there is a group defined by the base group name only, the other groups
automatically inherit its settings.

.remove = output
[[[output]]]
 file_system = disc
[[[output first]]]
 file_name = output1.nc
[[[output second]]]
 file_name = output2.nc

&output ! 'first'
 file_system = 'disc'
 file_name = 'output1.nc'
/
&output ! 'second'
 file_system = 'disc'
 file_name = 'output2.nc'
/

You may use the special string '%{id}' to re-use the group name extension as key value
and thus reduce visual clutter.

.remove = output
[[[output]]]
 file_name = output%{id}.nc
[[[output 1]]]
[[[output 2]]]

&output ! '1'
 file_name = 'output1.nc'
/
&output ! '2'
 file_name = 'output2.nc'
/

2.9.6 Using the namelist text

The formatted namelist text is stored in a global variable that may be used by a
template placeholder. This way, all job information available is written to a single
script or description file, and native script variables may be used in the namelist
definitions.

The name of this variable is generated from its respective file name, like
'namelist.echam', by converting all letters to upper case (namelist.echam →
NAMELIST.ECHAM) and replacing non-word characters by an underscore

30 2023-11-14, 10:55:41

(NAMELIST.ECHAM → NAMELIST_ECHAM).

joe1234.config
[namelists]
 [[namelist.echam]]
 [[[runctl]]]
 out_expname = $${EXP_ID}

#! /bin/sh
EXP_ID=%{EXP_ID}
cat > namelist.echam << EOF
%{NAMELIST_ECHAM}
EOF

which expand to

#! /bin/sh
EXP_ID=joe1234
cat > namelist.echam << EOF
&runctl
 out_expname = '${EXP_ID}'
/
EOF

Note how this setup uses the native script variable 'EXP_ID' to set the namelist
contents.

As an option, the namelist text may be formatted using the global function
'format_namelist', taking the namelist section as argument.

#! /bin/sh
EXP_ID=%{EXP_ID}
cat > namelist.echam << EOF
%{format_namelist(namelists['namelist.echam'])}
EOF

The result will be the same as in the original example.

Additionally, 'format_namelist' can take the name of a group within the namelist as a
second argument, allowing to format groups individually.

#! /bin/sh
EXP_ID=%{EXP_ID}
cat > namelist.echam << EOF
%{format_namelist(namelists['namelist.echam'], 'runctl')}
EOF

In this special case the result will still be the same, as 'runctl' is the only group within
'namelist.echam'.

As shown in the examples above, the script template is responsible for writing the
namelist text to an actual file. While in general the namelist file takes the same name
as the .config subsection defining it, mkexp will not enforce this. The template needs to
be set up accordingly.

31 2023-11-14, 10:55:41

2.9.7 Using native script variables in namelists

When using native script variables in a namelist, it may be necessary to suppress the
conversion of values to namelist conventions. Consider

[namelists]
 [[namelist.echam]]
 [[[runctl]]]
 dt_stop = $$final_date

final_date='2015, 12, 31, 23, 52, 30'
cat > namelist.echam << EOF
%{NAMELIST_ECHAM}
EOF

When the text for NAMELIST_ECHAM is generated, mkexp converts the value of
'dt_stop' to a string surrounded by single quotes (see 'EXP_ID' in the previous
examples), as '$$final_date' cannot be recognized as a numeric or logical value. In the
namelist context however it is needed as an unquoted list of integers. To fix this,
simply use the special syntax 'raw(…)' around the value:

 dt_stop = raw($$final_date)

which disables the conversion to a valid namelist value, leaving the correct formatting
of the native variable to the script.

2.9.8 Non-namelist parameter files

A [namelists] subsection may not only define a Fortran namelist file but also a custom
format parameter file. For any of these files, the special section variable '.use_template'
may be set to 'true', if the model setup provides a template 'subsection.tmpl', or to an
arbitrary template name, replacing subsection, if a template is applicable to more than
one section. This template is expanded using the subsection's variables to create a
suitably formatted text. As for genuine namelists, the result is stored in a global
variable.

2.9.9 Access full configuration in parameter files - and namelists

By default, only the namelist-specific section is passed to formatting, which usually is
what you want in standard Fortran namelists. For custom parameter files, access to
global variables or other sections may be more appropriate. Therefore, you can set the
special variable '.use_full_config' to 'true', allowing the full configuration to be queried
during formatting. For convenience, the namelist-specific section overrides global
varables of the same name. If needed, the overridden values are available in a special
section '_'.

2.10 Defining input files for an experiment
While the namelist files determine the model properties, the model state also depends

32 2023-11-14, 10:55:41

on input files for initial and boundary conditions or assimilation data. These files are
defined in the [files] special section.

Each subsection may define or override one of two special variables:

.base_dir
file names are taken to be relative to this directory

.sub_dir
file names are taken to be relative to this subdirectory of '.base_dir'

For expanding the resulting file path, mkexp provides two global functions:

get_file(section, name)

returns the full path for file name as given in the section object. Note that section
is given as object reference, but name is given as a string. If the value of name is
an absolute file name, it will override .base_dir and .sub_dir. If it contains native
script variables, they are expanded to their top-level configuration values; if none
is found, the native script variables are formatted as described before.

get_dir(section)

returns the directory for the given section object

Other than that, there are no restrictions on the content structure of this section, and
the job script templates are responsible for converting this content into a suitable
script text.

2.10.1 Overriding input files for certain jobs

As for namelists, there is special provision to change the [files] settings for a specific
job. Let us assume that a model run continues a previous run and reads that run's
state from a restart file that may be defined like this:

[files]
 [[echam]]
 [[[restart]]]
 restart_myexp_echam.nc = restart_myexp_echam_18491231.nc

The first run will instead pick up its state from another experiment. This is done with
a job specific 'files' subsection that – apart from the additional brackets – has the same
structure as the global 'files' section.

[jobs]
 [[run_first]]
 [[[files]]]
 [[[[echam]]]]
 [[[[[restart]]]]]
 restart_myexp_echam.nc = restart_anotherexp_echam_18491231.nc

This will result in a '.run_first' script that gets the model state from 'anotherexp',
while the '.run' script uses 'myexp'.

33 2023-11-14, 10:55:41

